skip to main content

Search for: All records

Award ID contains: 1802209

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Native biodiversity decline and non-native species spread are major features of the Anthropocene. Both processes can drive biotic homogenization by reducing trait and phylogenetic differences in species assemblages between regions, thus diminishing the regional distinctiveness of biotas and likely have negative impacts on key ecosystem functions. However, a global assessment of this phenomenon is lacking. Here, using a dataset of >200,000 plant species, we demonstrate widespread and temporal decreases in species and phylogenetic turnover across grain sizes and spatial extents. The extent of homogenization within major biomes is pronounced and is overwhelmingly explained by non-native species naturalizations. Asia and North America are major sources of non-native species; however, the species they export tend to be phylogenetically close to recipient floras. Australia, the Pacific and Europe, in contrast, contribute fewer species to the global pool of non-natives, but represent a disproportionate amount of phylogenetic diversity. The timeline of most naturalisations coincides with widespread human migration within the last ~500 years, and demonstrates the profound influence humans exert on regional biotas beyond changes in species richness.

  2. Herbarium collections shape our understanding of the world’s flora and are crucial for addressing global change and biodiversity conservation. The formation of such natural history collections, however, are not free from sociopolitical issues of immediate relevance. Despite increasing efforts addressing issues of representation and colonialism in natural history collections, herbaria have received comparatively less attention. While it has been noted that the majority of plant specimens are housed in the global North, the extent of this disparity has not been rigorously quantified to date. Here, by analyzing over 85 million specimen records and surveying herbaria across the globe, we assess the colonial legacy of botanical collections and how we may move towards a more inclusive future. We demonstrate that colonial exploitation has contributed to an inverse relationship between where plant biodiversity exists in nature and where it is housed in herbaria. Such disparities persist in herbaria across physical and digital realms despite overt colonialism having ended over half a century ago, suggesting ongoing digitization and decolonization efforts have yet to alleviate colonial-era discrepancies. We emphasize the need for acknowledging the inconvenient history of herbarium collections and the implementation of a more equitable, global paradigm for their collection, curation, and use.
  3. PREMISE Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for our understanding of variation in plant-insect ecological interactions and evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory over the entire geographic range where a plant-insect complex occurs is logistically difficult. Recently, new methods have been developed to use herbarium specimens to investigate patterns in plant-insect interactions across geographic areas, and during periods of accelerating anthropogenic change. Such investigations can provide insights into changes in herbivory intensity and phenology in plants that are of ecological and agricultural importance. METHODS Here, we analyze 274 pressed herbarium samples from all 14 species in the economically important plant genus Cucurbita (Cucurbitaceae) to investigate variation in herbivory damage. This collection is comprised of specimens of wild, undomesticated Cucurbita that were collected from across their native range in the Neotropics and subtropics, and Cucurbita cultivars that were collected from both within their native range and from locations where they have been introduced for agriculture in temperate Eastern North America. RESULTS We find that herbivory is common on individuals of all Cucurbita species collected from throughout their geographic ranges; however, estimates of herbivory varied considerablymore »among individuals, with greater damage observed in specimens collected from unmanaged habitat. We also find evidence that mesophytic species accrue more insect damage than xerophytic species. CONCLUSIONS Our study demonstrates that herbarium specimens are a useful resource for understanding ecological interactions between domesticated crop plants and co-evolved insect herbivores.« less
  4. PREMISE Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for our understanding of variation in plant-insect ecological interactions and evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory over the entire geographic range where a plant-insect complex occurs is logistically difficult. Recently, new methods have been developed to use herbarium specimens to investigate patterns in plant-insect interactions across geographic areas, and during periods of accelerating anthropogenic change. Such investigations can provide insights into changes in herbivory intensity and phenology in plants that are of ecological and agricultural importance. METHODS Here, we analyze 274 pressed herbarium samples from all 14 species in the economically important plant genus Cucurbita (Cucurbitaceae) to investigate variation in herbivory damage. This collection is comprised of specimens of wild, undomesticated Cucurbita that were collected from across their native range in the Neotropics and subtropics, and Cucurbita cultivars that were collected from both within their native range and from locations where they have been introduced for agriculture in temperate Eastern North America. RESULTS We find that herbivory is common on individuals of all Cucurbita species collected from throughout their geographic ranges; however, estimates of herbivory varied considerablymore »among individuals, with greater damage observed in specimens collected from unmanaged habitat. We also find evidence that mesophytic species accrue more insect damage than xerophytic species. CONCLUSIONS Our study demonstrates that herbarium specimens are a useful resource for understanding ecological interactions between domesticated crop plants and co-evolved insect herbivores.« less
  5. Abstract Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
  6. Summary Though substantial effort has gone into predicting how global climate change will impact biodiversity patterns, the scarcity of taxon‐specific information has hampered the efficacy of these endeavors. Further, most studies analyzing spatiotemporal patterns of biodiversity focus narrowly on species richness. We apply machine learning approaches to a comprehensive vascular plant database for the United States and generate predictive models of regional plant taxonomic and phylogenetic diversity in response to a wide range of environmental variables. We demonstrate differences in predicted patterns and potential drivers of native vs nonnative biodiversity. In particular, native phylogenetic diversity is likely to decrease over the next half century despite increases in species richness. We also identify that patterns of taxonomic diversity can be incongruent with those of phylogenetic diversity. The combination of macro‐environmental factors that determine diversity likely varies at continental scales; thus, as climate change alters the combinations of these factors across the landscape, the collective effect on regional diversity will also vary. Our study represents one of the most comprehensive examinations of plant diversity patterns to date and demonstrates that our ability to predict future diversity may benefit tremendously from the application of machine learning.