skip to main content


Title: Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2
Abstract. Stratospheric circulation is a critical part of the Arctic ozone cycle.Sudden stratospheric warming events (SSWs) manifest the strongest alterationof stratospheric dynamics. During SSWs, changes in planetary wavepropagation vigorously influence zonal mean zonal wind, temperature, andtracer concentrations in the stratosphere over the high latitudes. In thisstudy, we examine six persistent major SSWs from 2004 to 2020 using theModern-Era Retrospective analysis for Research and Applications, Version 2(MERRA-2). Using the unique density of observations around the Greenlandsector at high latitudes, we perform comprehensive comparisons of high-latitude observations with the MERRA-2 ozone dataset during the six majorSSWs. Our results show that MERRA-2 captures the high variability of mid-stratospheric ozone fluctuations during SSWs over high latitudes. However,larger uncertainties are observed in the lower stratosphere and troposphere.The zonally averaged stratospheric ozone shows a dramatic increase of9 %–29 % in total column ozone (TCO) near the time of each SSW, which lastsup to 2 months. This study shows that the average shape of the Arcticpolar vortex before SSWs influences the geographical extent, timing, andmagnitude of ozone changes. The SSWs exhibit a more significant impact onozone over high northern latitudes when the average polar vortex is mostlyelongated as seen in 2009 and 2018 compared to the events in which the polarvortex is displaced towards Europe. Strong correlation (R2=90  %) isobserved between the magnitude of change in average equivalent potentialvorticity before and after SSWs and the associated averaged total columnozone changes over high latitudes. This paper investigates the differentterms of the ozone continuity equation using MERRA-2 circulation, whichemphasizes the key role of vertical advection in mid-stratospheric ozoneduring the SSWs and the magnified vertical advection in elongated vortexshape as seen in 2009 and 2018.  more » « less
Award ID(s):
1801764
NSF-PAR ID:
10383929
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
8
ISSN:
1680-7324
Page Range / eLocation ID:
5435 to 5458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although sudden stratospheric warmings (SSWs) can improve subseasonal-to-seasonal forecasts, it is unclear whether the two types of SSW - displacements and splits - have different near- surface effects. To examine the longer-term (i.e., multi-week lead) tropospheric response to displacements and splits, we utilize an intermediate-complexity model and impose wave-1 and wave-2 stratospheric heating perturbations spun-off from a control run. At longer lags, the tropospheric response is found to be insensitive to both the wavenumber and location of the imposed heating, in agreement with freely evolving displacements and splits identified in the control run. At shorter lags, however, large differences are found between displacements and splits in both the control run and the different wavenumber- forced events. In particular, in the control run, the free-running splits have an immediate barotropic response throughout the stratosphere and troposphere whereas displacements take 1–2 weeks before a near-surface response becomes evident. Interestingly, this barotropic response found during CTRL splits is not captured by the barotropically forced wave-2 events, indicating that the zonal-mean tropospheric circulation is somehow coupled with the generation of the wave-2 splits. It is also found that in the control run, displacements yield stronger Polar-Cap temperature anomalies than splits, yet both still yield similar magnitude tropospheric responses. Hence, the strength of the stratospheric warming is not the only governing factor in the surface response. Overall, SSW classification based on vortex morphology may be useful for subseasonal but not seasonal tropospheric prediction. 
    more » « less
  2. Abstract

    The energetic particle precipitation (EPP) indirect effect (IE) refers to the downward transport of reactive odd nitrogen (NOx = NO + NO2) produced by EPP (EPP‐NOx) from the polar winter mesosphere and lower thermosphere to the stratosphere where it can destroy ozone. Previous studies of the EPP IE examined NOxdescent averaged over the polar region, but the work presented here considers longitudinal variations. We report that the January 2009 split Arctic vortex in the stratosphere left an imprint on the distribution of NO near the mesopause, and that the magnitude of EPP‐NOxdescent in the upper mesosphere depends strongly on the planetary wave (PW) phase. We focus on an 11‐day case study in late January immediately following the 2009 sudden stratospheric warming during which regional‐scale Lagrangian coherent structures (LCSs) formed atop the strengthening mesospheric vortex. The LCSs emerged over the north Atlantic in the vicinity of the trough of a 10‐day westward traveling planetary wave. Over the next week, the LCSs acted to confine NO‐rich air to polar latitudes, effectively prolonging its lifetime as it descended into the top of the polar vortex. Both a whole atmosphere data assimilation model and satellite observations show that the PW trough remained coincident in space and time with the NO‐rich air as both migrated westward over the Canadian Arctic. Estimates of descent rates indicate five times stronger descent inside the PW trough compared to other longitudes. This case serves to set the stage for future climatological analysis of NO transport via LCSs.

     
    more » « less
  3. Possible sources of the observed modulation of the tropical Madden‐Julian oscillation (MJO) by the stratospheric quasi‐biennial oscillation (QBO) and the 11‐year solar cycle are investigated using 41 years of reanalysis data and archived climate model data. Larger upward fluxes of extratropical planetary‐scale waves, leading in some cases to sudden stratospheric warmings (SSWs), are observed in late fall and early winter during the easterly phase of the QBO than during the westerly phase (the “Holton‐Tan effect”). A similar but smaller increase occurs, on average, during solar minima relative to solar maxima. In addition to the warming at high latitudes, extratropical wave forcing events produce cooling and reduced static stability in the tropical lower stratosphere. Here, it is found that if SSWs occur in early winter (before ∼mid‐January), the reduced static stability produces, on average, a statistically significant, lagged strengthening of the MJO. This therefore represents a possible mechanism for producing, or at least enhancing, the observed QBO and solar modulations of the MJO in boreal winter. An initial analysis of archived climate model data shows that at least one model version with realistic QBO and solar forcing and with 4 X CO2 forcings partly simulates both of these characteristics (QBO/solar modulation of early winter wave forcing and lagged strengthening of the MJO following early winter SSWs). However, the modeled MJO is insufficiently sensitive to QBO‐induced static stability reductions, precluding simulation of the QBO‐MJO connection. 
    more » « less
  4. null (Ed.)
    Abstract. This study quantifies differences among four widely usedatmospheric reanalysis datasets (ERA5, JRA-55, MERRA-2, and CFSR) in theirrepresentation of the dynamical changes induced by springtime polarstratospheric ozone depletion in the Southern Hemisphere from 1980 to 2001.The intercomparison is undertaken as part of the SPARC(Stratosphere–troposphere Processes and their Role in Climate) ReanalysisIntercomparison Project (S-RIP). The reanalyses are generally in goodagreement in their representation of the strengthening of the lowerstratospheric polar vortex during the austral spring–summer season,associated with reduced radiative heating due to ozone loss, as well as thedescent of anomalously strong westerly winds into the troposphere duringsummer and the subsequent poleward displacement and intensification of thepolar front jet. Differences in the trends in zonal wind between thereanalyses are generally small compared to the mean trends. The exception isCFSR, which exhibits greater disagreement compared to the other threereanalysis datasets, with stronger westerly winds in the lower stratospherein spring and a larger poleward displacement of the tropospheric westerlyjet in summer. The dynamical changes associated with the ozone hole are examined byinvestigating the momentum budget and then the eddy heat and momentumfluxes in terms of planetary- and synoptic-scale Rossby wave contributions.The dynamical changes are consistently represented across the reanalysesand support our dynamical understanding of the response of the coupledstratosphere–troposphere system to the ozone hole. Although our resultssuggest a high degree of consistency across the four reanalysis datasets inthe representation of these dynamical changes, there are larger differencesin the wave forcing, residual circulation, and eddy propagation changes compared to the zonal wind trends. In particular, there is a noticeabledisparity in these trends in CFSR compared to the other three reanalyses,while the best agreement is found between ERA5 and JRA-55. Greateruncertainty in the components of the momentum budget, as opposed to meancirculation, suggests that the zonal wind is better constrained by theassimilation of observations compared to the wave forcing, residualcirculation, and eddy momentum and heat fluxes, which are more dependent onthe model-based forecasts that can differ between reanalyses. Lookingforward, however, these findings give us confidence that reanalysis datasetscan be used to assess changes associated with the ongoing recovery ofstratospheric ozone. 
    more » « less
  5. The tropospheric response to midwinter sudden stratospheric warmings (SSWs) is examined using an idealized model. SSW events are triggered by imposing high-latitude stratospheric heating perturbations of varying magnitude for only a few days, spun off from a free-running control integration (CTRL). The evolution of the thermally triggered SSWs is then compared with naturally occurring SSWs identified in CTRL. By applying a heating perturbation, with no modification to the momentum budget, it is possible to isolate the tropospheric response directly attributable to a change in the stratospheric polar vortex, independent of any planetary wave momentum torques involved in the initiation of an SSW. Zonal-wind anomalies associated with the thermally triggered SSWs first propagate downward to the high-latitude troposphere after ~2 weeks, before migrating equatorward and stalling at midlatitudes, where they straddle the near-surface jet. After ~3 weeks, the circulation and eddy fluxes associated with thermally triggered SSWs evolve very similarly to SSWs in CTRL, despite the lack of initial planetary wave driving. This suggests that at longer lags, the tropospheric response to SSWs is generic and it is found to be linearly governed by the strength of the lower-stratospheric warming, whereas at shorter lags, the initial formation of the SSW potentially plays a large role in the downward coupling. In agreement with previous studies, synoptic waves are found to play a key role in the persistent tropospheric jet shift at long lags. Synoptic waves appear to respond to the enhanced midlatitude baroclinicity associated with the tropospheric jet shift, and preferentially propagate poleward in an apparent positive feedback with changes in the high-latitude refractive index. 
    more » « less