skip to main content

Title: Diagnosing Moisture Sources for Flash Floods in the United States. Part II: Terrestrial and Oceanic Sources of Moisture

Backward trajectories were derived from North American Regional Reanalysis data for 19 253 flash flood reports published by the National Weather Service to determine the along-path contribution of the land surface to the moisture budget for flash flood events in the conterminous United States. The impact of land surface interactions was evaluated seasonally and for six regions: the West Coast, Arizona, the Front Range, Flash Flood Alley, the Missouri Valley, and the Appalachians. Parcels were released from locations that were impacted by flash floods and traced backward in time for 120 h. The boundary layer height was used to determine whether moisture increases occurred within the boundary layer or above it. Moisture increases occurring within the boundary layer were attributed to evapotranspiration from the land surface, and surface properties were recorded from an offline run of the Noah land surface model. In general, moisture increases attributed to the land surface were associated with anomalously high surface latent heat fluxes and anomalously low sensible heat fluxes (resulting in a positive anomaly of evaporative fraction) as well as positive anomalies in top-layer soil moisture. Over the ocean, uptakes were associated with positive anomalies in sea surface temperatures, the magnitude of which varies both regionally and seasonally. Major oceanic surface-based source regions of moisture for flash floods in the United States include the Gulf of Mexico and the Gulf of California, while boundary layer moisture increases in the southern plains are attributable in part to interactions between the land surface and the atmosphere.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Page Range / eLocation ID:
p. 1511-1531
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study uses backward trajectories derived from North American Regional Reanalysis data for 19 253 flash flood reports during the period 2007–13 published by the National Weather Service to assess the origins of air parcels for flash floods in the conterminous United States. The preferred flow paths for parcels were evaluated seasonally and for six regions of interest: the West Coast, Arizona, the Front Range of the Rocky Mountains, Flash Flood Alley in south-central Texas, the Missouri Valley, and the Appalachians. Parcels were released from vertical columns in the atmosphere at times and locations where there were reported flash floods; these were traced backward in time for 5 days. The temporal and seasonal cycles of flood events in these regions are also explored. The results show the importance of trajectories residing for long periods over oceanic regions such as the Gulf of Mexico and the Caribbean Sea. The flow is generally unidirectional with height in the lower layers of the atmosphere. The trajectory paths from oceanic genesis regions to inland hotspots and their orientation with height provide clues that can assist in the diagnosis of impending flash floods. Part II of this manuscript details the land–atmosphere interactions along the trajectory paths.

    more » « less
  2. Abstract Human heat stress depends jointly on atmospheric temperature and humidity. Wetter soils reduce temperature but also raise humidity making the collective impact on heat stress unclear. To better understand these interactions, we use ERA5 reanalysis to examine the coupling between daily average soil moisture and wet-bulb temperature ( T w ) and its seasonal and diurnal cycle at global scale. We identify a global soil moisture- T w coupling pattern with both widespread negative and positive correlations in contrast to the well-established cooling effect of wet soil on dry-bulb temperature. Regions showing positive correlations closely resemble previously identified land-atmosphere coupling hotspots where soil moisture effectively controls surface energy partition. Soil moisture- T w coupling varies seasonally closely tied to monsoon development, and the positive coupling is slightly stronger and more widespread during nighttime. Local-scale analysis demonstrates a nonlinear structure of soil moisture- T w coupling with stronger coupling under relatively dry soils. Hot-days with high T w values show wetter-than-normal soil, anomalous high latent and low sensible heat flux from a cooler surface, and a shallower boundary layer. This supports the hypothesis that wetter soil increases T w by concentrating surface moist enthalpy flux within a shallower boundary layer and reducing free-troposphere air entrainment. We identify areas of particular interest for future studies on the physical mechanisms of soil moisture-heat stress coupling. Our findings suggest that increasing soil moisture might amplify heat stress over large portions of the world including several densely populated areas. These results also raise questions about the effectiveness of evaporative cooling strategies in ameliorating urban heat stress. 
    more » « less
  3. Abstract

    The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.

    more » « less
  4. Abstract Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits amplify extreme heat in some regions. However, the relative roles of these two factors in causing heatwaves is still unclear. Here we use constructed circulation analogs to estimate the contribution of atmospheric circulation to heatwaves in the United States in the Community Earth System Model version 1 (CESM1) preindustrial control simulations. After accounting for the component of the heatwaves explained by circulation, we explore the relationship between the residual temperature anomalies and soil moisture. We find that circulation explains over 85% of heatwave temperature anomalies in the eastern and western United States but only 75%–85% in the central United States. In this region, there is a significant negative correlation between soil moisture the week before the heatwave and the strength of the heatwave that explains additional variance. Further, for the hottest central U.S. heatwaves, positive temperature anomalies and negative soil moisture anomalies are evident over a month before heatwave onset. These results provide evidence that positive land–atmosphere feedbacks may be amplifying heatwaves in the central United States and demonstrate the geographic heterogeneity in the relative importance of the land and atmosphere for heatwave development. Analysis of future circulation and soil moisture in the CESM1 Large Ensemble indicates that, over parts of the United States, both may be trending toward greater heatwave likelihood. 
    more » « less
  5. Abstract

    As global mean temperature rises, extreme drought events are expected to increasingly affect regions of the United States that are crucial for agriculture, forestry, and natural ecology. A pressing need is to understand and anticipate the conditions under which extreme drought causes catastrophic failure to vegetation in these areas. To better predict drought impacts on ecosystems, we first must understand how specific drivers, namely, atmospheric aridity and soil water stress, affect land surface processes during the evolution of flash drought events. In this study, we evaluated when vapor pressure deficit (VPD) and soil moisture thresholds corresponding to photosynthetic shutdown were crossed during flash drought events across different climate zones and land surface characteristics in the United States. First, the Dynamic Canopy Biophysical Properties (DCBP) model was used to estimate the thresholds that define reduced photosynthesis by assimilating vegetation phenology data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to a predictive phenology model. Next, we characterized and quantified flash drought onset, intensity, and duration using the standardized evaporative stress ratio (SESR) and NLDAS-2 reanalysis. Once periods of flash drought were identified, we investigated how VPD and soil moisture coevolved across regions and plant functional types. Results demonstrate that croplands and grasslands tend to be more sensitive to soil water limitations than trees across different regions of the United States. We found that whether VPD or soil moisture was the primary driver of plant water stress during drought was largely region specific. The results of this work will help to inform land managers of early warning signals relevant for specific ecosystems under threat of flash drought events.

    more » « less