skip to main content


Title: X-ray absorption spectroscopy insights on the structure anisotropy and charge transfer in Chevrel Phase chalcogenides
The electronic structure and local coordination of binary (Mo 6 T 8 ) and ternary Chevrel Phases (M x Mo 6 T 8 ) are investigated for a range of metal intercalant and chalcogen compositions. We evaluate differences in the Mo L 3 -edge and K-edge X-ray absorption near edge structure across the suite of chalcogenides M x Mo 6 T 8 (M = Cu, Ni, x = 1–2, T = S, Se, Te), quantifying the effect of compositional and structural modification on electronic structure. Furthermore, we highlight the expansion, contraction, and anisotropy of Mo 6 clusters within these Chevrel Phase frameworks through extended X-ray absorption fine structure analysis. Our results show that metal-to-cluster charge transfer upon intercalation is dominated by the chalcogen acceptors, evidenced by significant changes in their respective X-ray absorption spectra in comparison to relatively unaffected Mo cations. These results explain the effects of metal intercalation on the electronic and local structure of Chevrel Phases across various chalcogen compositions, and aid in rationalizing electron distribution within the structure.  more » « less
Award ID(s):
2044403
NSF-PAR ID:
10384108
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
28
ISSN:
1463-9076
Page Range / eLocation ID:
17289 to 17294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Redox-active multimetallic platforms with synthetically addressable and hemilabile active sites are attractive synthetic targets for mimicking the reactivity of enzymatic co-factors toward multielectron transformations. To this end, a family of ternary clusters featuring three edge metal sites anchored on a [Co 6 Se 8 ] multimetallic support via amidophosphine ligands are a promising platform. In this report, we explore how small changes in the stereoelectronic properties of these ligands alter [Co 6 Se 8 ] metalloligand formation, but also substrate binding affinity and strength of the edge/support interaction in two new ternary clusters, M 3 Co 6 Se 8 L 6 (M = Zn, Fe; L (−) = Ph 2 PN (−)i Pr). These clusters are characterized extensively using a range of methods, including single crystal X-ray diffraction, electronic absorption spectroscopy and cyclic voltammetry. Substrate binding studies reveal that Fe 3 Co 6 Se 8 L 6 resists coordination of larger ligands like pyridine or tetrahydrofuran, but binds the smaller ligand CN t Bu. Additionally, investigations into the synthesis of new [Co 6 Se 8 ] metalloligands using two aminophosphines, Ph 2 PN(H) i Pr (L H ) and i Pr 2 PN(H) i Pr, led to the synthesis and characterization of Co 6 Se 8 L H 6 , as well as the smaller clusters Co 4 Se 2 (CO) 6 L H 4 , Co 3 Se(μ 2 -PPh 2 )(CO) 4 L H 3 , and [Co(CO) 3 ( i Pr 2 PN(H) i Pr)] 2 . Cumulatively, this study expands our understanding on the effect of the stereoelectronic properties of aminophosphine ligands in the synthesis of cobalt chalcogenide clusters, and, importantly on modulating the push–pull dynamic between the [Co 6 Se 8 ] support, the edge metals and incoming coordinating ligands in ternary M 3 Co 6 Se 8 L 6 clusters. 
    more » « less
  2. Most known porphyry Cu±Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite–trondhjemite–granodiorite–diorite (TTG) magmas predominant in the Archean are hypothesized to be unoxidized and sulfur-poor, which together preclude porphyry Cu deposit formation. Here, we test this hypothesis by interrogating the causative magmas for the ∼2·7 Ga TTG-related Côté Gold, St-Jude, and Clifford porphyry-type Cu±Au deposit settings in the Neoarchean southern Abitibi subprovince. New and previously published geochronological results constrain the age of emplacement of the causative magmas at ∼2·74 Ga, ∼2·70 Ga, and∼2·69 Ga, respectively. The dioritic and trondhjemitic magmas associated with Côté Gold and St-Jude evolved along a plagioclase-dominated fractionation trend, in contrast to amphibole-dominated fractionation for tonalitic magma at Clifford. Analyses of zircon grains from the Côté Gold, St-Jude, and Clifford igneous rocks yielded εHf(t)±SD values of 4·5±0·3, 4·2±0·6, and 4·3±0·4, and δ18O±SD values of 5·40±0·11  , 3·91±0·13  , and 4·83±0·12  , respectively. These isotopic signatures indicate that, although these magmas are mantle-sourced with minimal crustal contamination, for the St- Jude and Clifford settings the magmas or their sources may have undergone variable alteration by heated seawater or meteoric fluids. Primary barometric minerals (i.e. zircon, amphibole, apatite, and magnetite–ilmenite) that survived variable alteration and metamorphism (up to greenschist facies) were used for estimating fO2 of the causative magmas. Estimation of magmatic fO2 values, reported relative to the fayalite–magnetite–quartz buffer as  FMQ, using zircon geochemistry indicates that the fO2 values of the St-Jude, Côté Gold, and Clifford magmas increase from  FMQ –0·3±0·6 to  FMQ +0·8±0·4 and to  FMQ +1·2±0·4, respectively. In contrast, amphibole chemistry yielded systematically higher fO2 values of  FMQ +1·6±0·3 and  FMQ +2·6±0·1 for Côté Gold and Clifford, respectively, which are consistent with previous studies that indicate that amphibole may overestimate the fO2 of intrusive rocks by up to 1 log unit. Micro X-ray absorption near edge structure (μ-XANES) spectrometric determination of sulfur (i.e. S6+/ S) in primary apatite yielded ≥ FMQ−0·3 and FMQ+1·4–1·8 for St-Jude and Clifford, respectively. The magnetite–ilmenite mineral pairs from the Clifford tonalite yielded  FMQ +3·3±1·3 at equilibrium temperatures of 634±21 ◦C, recording the redox state of the late stage of magma crystallization. Electron probe microanalyses revealed that apatite grains from Clifford are enriched in S (up to 0·1 wt%) relative to those of Côté Gold and St-Jude (below the detection limit), which is attributed to either relatively oxidized or sulfur-rich features of the Clifford tonalite. We interpret these results to indicate that the deposits at Côté Gold and Clifford formed from mildly (∼ FMQ +0·8±0·4) to moderately (∼ FMQ +1·5) oxidized magmas where voluminous early sulfide saturation was probably limited, whereas the St-Jude deposit represents a rare case whereby the ingress of externally derived hydrothermal fluids facilitated metal fertility in a relatively reduced magma chamber (∼ FMQ +0). Furthermore, we conclude that variable modes of formation for these deposits and, in addition, the apparent rarity of porphyry-type Cu–Au deposits in the Archean may be attributed to either local restriction of favorable metallogenic conditions, and/or preservation, or an exploration bias. 
    more » « less
  3. Abstract

    Electrochemical hydrogenation of nitrate to ammonia using renewable electricity is a promising route for sustainability but lacks catalysts that can deliver balanced selectivity, activity, and durability. Here, a new family of noble metal‐free and high‐performing Chevrel phase Ni2Mo6T8(T = S, Se, and Te) catalysts that have similar structural and textural properties and differ presumably only in chalcogenide anion is systematically studied. The side‐by‐side comparisons allow the uncovering of the critical roles of chalcogenide anions in impacting kinetic activities and long‐term durability. The incorporation of anions with larger size and smaller electronegativity from sulfide to selenide and telluride invokes stronger inhibition of the otherwise competing hydrogen evolution reaction (HER) and steers the hydrogenation toward the selective formation of ammonia, thus improving both Faradic selectivity and the turnover frequency to high levels of 99.4% and 21.5 s−1, respectively, on the Ni2Mo6Te8catalyst. More significantly, the bulkier anion in the Ni2Mo6T8catalyst kinetically inhibited the intercalation of electrolyte cations, a major degradation mechanism in the catalyst family examined here and delivered several times improved durability. Therefore, this study introduces novel active motifs for selective nitrate reduction and provides insights into the catalyst degradation mechanism and practical ways to improve durability.

     
    more » « less
  4. Abstract

    Initially, vanadium dioxide seems to be an ideal first-order phase transition case study due to its deceptively simple structure and composition, but upon closer inspection there are nuances to the driving mechanism of the metal-insulator transition (MIT) that are still unexplained. In this study, a local structure analysis across a bulk powder tungsten-substitution series is utilized to tease out the nuances of this first-order phase transition. A comparison of the average structure to the local structure using synchrotron x-ray diffraction and total scattering pair-distribution function methods, respectively, is discussed as well as comparison to bright field transmission electron microscopy imaging through a similar temperature-series as the local structure characterization. Extended x-ray absorption fine structure fitting of thin film data across the substitution-series is also presented and compared to bulk. Machine learning technique, non-negative matrix factorization, is applied to analyze the total scattering data. The bulk MIT is probed through magnetic susceptibility as well as differential scanning calorimetry. The findings indicate the local transition temperature ($$T_c$$Tc) is less than the average$$T_c$$Tcsupporting the Peierls-Mott MIT mechanism, and demonstrate that in bulk powder and thin-films, increasing tungsten-substitution instigates local V-oxidation through the phase pathway VO$$_2\, \rightarrow$$2V$$_6$$6O$$_{13} \, \rightarrow$$13V$$_2$$2O$$_5$$5.

     
    more » « less
  5. Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal–metal and metal–chalcogenide interactions. Herein, we present Ir 6 In 32 S 21 , a novel semiconducting subchalcogenide compound that crystallizes in a new structure type in the polar P 31 m space group, with unit cell parameters a = 13.9378(12) Å, c = 8.2316(8) Å, α = β = 90°, γ = 120°. The compound has a large band gap of 1.48(2) eV, and photoemission and Kelvin probe measurements corroborate this semiconducting behavior with a valence band maximum (VBM) of −4.95(5) eV, conduction band minimum of −3.47(5) eV, and a photoresponse shift of the Fermi level by ∼0.2 eV in the presence of white light. X-ray absorption spectroscopy shows absorption edges for In and Ir do not indicate clear oxidation states, suggesting that the numerous coordination environments of Ir 6 In 32 S 21 make such assignments ambiguous. Electronic structure calculations confirm the semiconducting character with a nearly direct band gap, and electron localization function (ELF) analysis suggests that the origin of the gap is the result of electron transfer from the In atoms to the S 3p and Ir 5d orbitals. DFT calculations indicate that the average hole effective masses near the VBM (1.19 m e ) are substantially smaller than the average electron masses near the CBM (2.51 m e ), an unusual feature for most semiconductors. The crystal and electronic structure of Ir 6 In 32 S 21 , along with spectroscopic data, suggest that it is neither a true intermetallic nor a classical semiconductor, but somewhere in between those two extremes. 
    more » « less