skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2044403

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lanthanoid oxysulphides exhibit great versatility in their chemical compositions which allow for their optoelectronic properties to be tuned by the relative amounts of oxygen and sulphur present in their crystal structures. 
    more » « less
  2. This work presents a systematic investigation of the electrochemical intercalation of aqueous copper cations into the Chevrel phase (CP) Mo6S8and its effect on the host's electronic and structural characteristics as a function of stoichiometry. 
    more » « less
  3. The electronic structure and local coordination of binary (Mo 6 T 8 ) and ternary Chevrel Phases (M x Mo 6 T 8 ) are investigated for a range of metal intercalant and chalcogen compositions. We evaluate differences in the Mo L 3 -edge and K-edge X-ray absorption near edge structure across the suite of chalcogenides M x Mo 6 T 8 (M = Cu, Ni, x = 1–2, T = S, Se, Te), quantifying the effect of compositional and structural modification on electronic structure. Furthermore, we highlight the expansion, contraction, and anisotropy of Mo 6 clusters within these Chevrel Phase frameworks through extended X-ray absorption fine structure analysis. Our results show that metal-to-cluster charge transfer upon intercalation is dominated by the chalcogen acceptors, evidenced by significant changes in their respective X-ray absorption spectra in comparison to relatively unaffected Mo cations. These results explain the effects of metal intercalation on the electronic and local structure of Chevrel Phases across various chalcogen compositions, and aid in rationalizing electron distribution within the structure. 
    more » « less