A symmetry mode analysis yields 47 symmetrically distinct patterns of octahedral tilting in hybrid organic–inorganic layered perovskites that adopt then= 1 Ruddlesden–Popper (RP) structure. The crystal structures of compounds belonging to this family are compared with the predictions of the symmetry analysis. Approximately 88% of the 140 unique structures have symmetries that agree with those expected based on octahedral tilting alone, while the remaining compounds have additional structural features that further lower the symmetry, such as asymmetric packing of bulky organic cations, distortions of metal-centered octahedra or a shift of the inorganic layers that deviates from thea/2 +b/2 shift associated with the RP structure. The structures of real compounds are heterogeneously distributed amongst the various tilt systems, with only 9 of the 47 tilt systems represented. No examples of in-phase ψ-tilts about theaand/orbaxes of the undistorted parent structure were found, while at the other extreme ∼66% of the known structures possess a combination of out-of-phase ϕ-tilts about theaand/orbaxes and θ-tilts (rotations) about thecaxis. The latter combination leads to favorable hydrogen bonding interactions that accommodate the chemically inequivalent halide ions within the inorganic layers. In some compounds, primarily those that contain either Pb2+or Sn2+, favorable hydrogen bonding interactions can also be achieved by distortions of the octahedra in combination with θ-tilts.
more »
« less
Refining perovskite structures to pair distribution function data using collective Glazer modes as a basis
Structural modelling of octahedral tilts in perovskites is typically carried out using the symmetry constraints of the resulting space group. In most cases, this introduces more degrees of freedom than those strictly necessary to describe only the octahedral tilts. It can therefore be a challenge to disentangle the octahedral tilts from other structural distortions such as cation displacements and octahedral distortions. This paper reports the development of constraints for modelling pure octahedral tilts and implementation of the constraints in diffpy-CMI , a powerful package to analyse pair distribution function (PDF) data. The model in the program allows features in the PDF that come from rigid tilts to be separated from non-rigid relaxations, providing an intuitive picture of the tilting. The model has many fewer refinable variables than the unconstrained space group fits and provides robust and stable refinements of the tilt components. It further demonstrates the use of the model on the canonical tilted perovskite CaTiO 3 which has the known Glazer tilt system α + β − β − . The Glazer model fits comparably to the corresponding space-group model Pnma below r = 14 Å and becomes progressively worse than the space-group model at higher r due to non-rigid distortions in the real material.
more »
« less
- Award ID(s):
- 1922234
- PAR ID:
- 10384213
- Date Published:
- Journal Name:
- IUCrJ
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2052-2525
- Page Range / eLocation ID:
- 705 to 712
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Perovskite oxide heterostructures host a large number of interesting phenomena such as ferroelectricity, which are often driven by octahedral distortions in the crystal that may induce polarization. SrHfO3 (SHO) is a perovskite oxide with a pseudocubic lattice parameter of 4.08 Å that previous density functional theory (DFT) calculations suggest can be stabilized in a ferroelectric P4mm phase when stabilized with sufficient compressive strain. Additionally, it is insulating and possesses a large band gap and a high dielectric constant, making it an ideal candidate for oxide electronic devices. To test the viability of epitaxial strain as a driver of ferroic phase transitions, SHO films were grown by hybrid molecular beam epitaxy (hMBE) with a tetrakis(ethylmethylamino)hafnium(IV) source on GdScO3 and TbScO3 substrates. Strained SHO phases were characterized using X-ray diffraction, X-ray absorption spectroscopy, and scanning transmission electron microscopy to determine the space group of the strained films, with the results compared to those of DFT-optimized models of phase stability versus strain. Contrary to past reports, we find that compressively strained SrHfO3 undergoes octahedral tilt distortions without associated ferroelectric polarization and most likely takes on the I4/mcm phase with the a0a0c– tilt pattern.more » « less
-
The temperature-dependent layer-resolved structure of 3 to 44 unit cell thick SrRuO3 (SRO) films grown on Nb-doped SrTiO3 substrates is investigated using a combination of high-resolution synchrotron x-ray diffraction and high-resolution electron microscopy to understand the role that structural distortions play in suppressing ferromagnetism in ultra-thin SRO films. The oxygen octahedral tilts and rotations and Sr displacements characteristic of the bulk orthorhombic phase are found to be strongly dependent on temperature, the film thickness, and the distance away from the film–substrate interface. For thicknesses, t, above the critical thickness for ferromagnetism (t > 3 uc), the orthorhombic distortions decrease with increasing temperature above TC. Below TC, the structure of the films remains constant due to the magneto-structural coupling observed in bulk SRO. The orthorhombic distortions are found to be suppressed in the 2–3 interfacial layers due to structural coupling with the SrTiO3 substrate and correlate with the critical thickness for ferromagnetism in uncapped SRO films.more » « less
-
A computational investigation is presented, in conjunction with synthesis and experimental characterization, into the structural, electronic, and optical properties of layered two‐dimensional organic lead bromide perovskites. Materials based on the chiral (R/S)‐4‐fluoro‐α‐methylbenzylammonium (R/S‐FMBA), which have been shown to lead to bright room‐temperature circularly polarized luminescence, are contrasted with the similar achiral 4‐fluorobenzylammonium (FBA). Using density functional theory (DFT) with van der Waals (vdW) corrections, relaxed structures (compared with X‐ray diffraction, XRD) and optical absorption spectra (compared with experiments) are studied, as well as band structure and orbital character of transitions. A Python code is developed and provided to calculate octahedral distortions and compare DFT and XRD results, finding that vdW corrections are important for accuracy and that DFT overestimates octahedral tilt angles. (FMBA)2PbBr4shows among the largest tilt angle differences (often termed ) reported, 14°–15°, indicating strong inversion symmetry‐breaking, which enables its chiral emission. A large resulting Dresselhaus spin‐splitting effect is found. The lowest‐energy optical transitions involve the perovskite only and are polarized within the layer. This work furthers understanding of structure‐property relations with applications to optoelectronics and spintronics.more » « less
-
The structure of a series of lanthanide iron cobalt perovskite oxides, R (Fe 0.5 Co 0.5 )O 3 ( R = Pr, Nd, Sm, Eu, and Gd), have been investigated. The space group of these compounds was confirmed to be orthorhombic Pnma (No. 62), Z = 4. From Pr to Gd, the lattice parameter a varies from 5.466 35(13) Å to 5.507 10(13) Å, b from 7.7018(2) to 7.561 75(13) Å, c from 5.443 38(10) to 5.292 00(8) Å, and unit-cell volume V from 229.170(9) Å 3 to 220.376(9) Å 3 , respectively. While the trend of V follows the trend of the lanthanide contraction, the lattice parameter “ a ” increases as the ionic radius r ( R 3+ ) decreases. X-ray diffraction (XRD) and transmission electron microscopy confirm that Fe and Co are disordered over the octahedral sites. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ , and ω , which represent rotations of an octahedron about the pseudocubic perovskite [110] p , [001] p , and [111] p axes. All three tilt angles increase across the lanthanide series (for R = Pr to R = Gd: θ increases from 12.3° to 15.2°, ϕ from 7.5° to 15.8°, and ω from 14.4° to 21.7°), indicating a greater octahedral distortion as r ( R 3+ ) decreases. The bond valence sum for the sixfold (Fe/Co) site and the eightfold R site of R (Fe 0.5 Co 0.5 )O 3 reveal no significant bond strain. Density Functional Theory calculations for Pr(Fe 0.5 Co 0.5 )O 3 support the disorder of Fe and Co and suggest that this compound to be a narrow band gap semiconductor. XRD patterns of the R (Fe 0.5 Co 0.5 )O 3 samples were submitted to the Powder Diffraction File.more » « less
An official website of the United States government

