skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Fan-shaped jet close to a light bridge
Aims. On the Sun, jets in light bridges (LBs) are frequently observed with high-resolution instruments. The respective roles played by convection and the magnetic field in triggering such jets are not yet clear. Methods. We report a small fan-shaped jet along a LB observed by the 1.6m Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI), the Visible Imaging Spectrometer (VIS) in H α , and the Near-InfraRed Imaging Spectropolarimeter (NIRIS), along with the Stokes parameters. The high spatial and temporal resolution of those instruments allowed us to analyze the features identified during the jet event. By constructing the H α Dopplergrams, we found that the plasma is first moving upward, whereas during the second phase of the jet, the plasma is flowing back. Working with time slice diagrams, we investigated the propagation-projected speed of the fan and its bright base. Results. The fan-shaped jet developed within a few minutes, with diverging beams. At its base, a bright point was slipping along the LB and ultimately invaded the umbra of the sunspot. The H α profiles of the bright points enhanced the intensity in the wings, similarly to the case of Ellerman bombs. Co-temporally, the extreme ultraviolet (EUV) brightenings developed at the front of the dark material jet and moved at the same speed as the fan, leading us to propose that the fan-shaped jet material compressed and heated the ambient plasma at its extremities in the corona. Conclusions. Our multi-wavelength analysis indicates that the fan-shaped jet could result from magnetic reconnection across the highly diverging field low in the chromosphere, leading to an apparent slipping motion of the jet material along the LB. However, we did not find any opposite magnetic polarity at the jet base, as would typically be expected in such a configuration. We therefore discuss other plausible physical mechanisms, based on waves and convection, that may have triggered the event.  more » « less
Award ID(s):
1821294 2108235
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims.Recurring jets are observed in the solar atmosphere. They can erupt intermittently over a long period of time. By the observation of intermittent jets, we wish to understand what causes the characteristics of the periodic eruptions.

    Methods.We report intermittent jets observed by the Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI), the Visible Imaging Spectrometer (VIS) in Hα, and the Near-InfraRed Imaging Spectropolarimeter (NIRIS). The analysis was aided and complemented by 1400 Å and 2796 Å data from the Interface Region Imaging Spectrograph (IRIS). These observational instruments allowed us to analyze the temporal characteristics of the jet events. By constructing the Hαdopplergrams, we found that the plasma first moves upward, but during the second phase of the jet, the plasma flows back. Working with time slice diagrams, we investigated the characteristics of the jet dynamics.

    Results.The jet continued for up to 4 h. The time-distance diagram shows that the peak of the jet has clear periodic-eruption characteristics (5 min) during 18:00 UT–18:50 UT. We also found a periodic brightening phenomenon (5 min) during the jet bursts in the observed bands in the transition region (1400 Å and 2796 Å), which may be a response to intermittent jets in the upper solar atmosphere. The time lag is 3 min. Evolutionary images in the TiO band revealed a horizontal movement of the granulation at the location of the jet. By comparison to the quiet region of the Sun, we found that the footpoint of the jet is enhanced at the center of the Hαspectral line profile, without significant changes in the line wings. This suggests prolonged heating at the footpoint of the jet. In the mixed-polarity magnetic field region of the jet, we observed the emergence of magnetic flux, its cancellation, and shear, indicating possible intermittent magnetic reconnection. This is confirmed by the nonlinear force-free field model, which was reconstructed using the magneto-friction method.

    Conclusions.The multiwavelength analysis indicates that the events we studied were triggered by magnetic reconnection that was caused by mixed-polarity magnetic fields. We suggest that the horizontal motion of the granulation in the photosphere drives the magnetic reconnection, which is modulated byp-mode oscillations.

    more » « less
  2. Abstract We report on high-resolution observations of recurrent fan-like jets by the Goode Solar Telescope in multiple wavelengths inside a sunspot group. The dynamics behavior of the jets is derived from the H α line profiles. Quantitative values for one well-identified event have been obtained, showing a maximum projected velocity of 42 km s −1 and a Doppler shift of the order of 20 km s −1 . The footpoints/roots of the jets have a lifted center on the H α line profile compared to the quiet Sun, suggesting a long-lasting heating at these locations. The magnetic field between the small sunspots in the group shows a very high resolution pattern with parasitic polarities along the intergranular lanes accompanied by high-velocity converging flows (4 km s −1 ) in the photosphere. Magnetic cancellations between the opposite polarities are observed in the vicinity of the footpoints of the jets. Along the intergranular lanes horizontal magnetic field around 1000 G is generated impulsively. Overall, all the kinetic features at the different layers through the photosphere and chromosphere favor a convection-driven reconnection scenario for the recurrent fan-like jets and evidence a site of reconnection between the photosphere and chromosphere corresponding to the intergranular lanes. 
    more » « less
  3. Abstract

    We report a magnetic relaxation process inside a sunspot associated with the evolution of a transient light bridge (LB). From high-resolution imaging and spectro-polarimetric data taken by the 1.6 m Goode Solar Telescope installed at Big Bear Solar Observatory, we observe the evolutionary process of a rapidly evolving LB. The LB is formed as a result of the strong intrusion of filamentary structures with relatively horizontal fields into the vertical umbral field region. A strong current density is detected along a localized region where the magnetic field topology changes rapidly in the sunspot, especially in the boundary region between the LB and the umbra, and bright jets are observed intermittently and repeatedly in the chromosphere along this region through magnetic reconnection. In the second half of our observation, the horizontal component of the magnetic field diminishes within the LB, and the typical convection structure within the sunspot, which manifests itself as umbral dots, is restored. Our findings provide a comprehensive perspective not only on the evolution of an LB itself but also on its impacts in the neighboring regions, including the chromospheric activity and the change of magnetic energy of a sunspot.

    more » « less
  4. We report a detailed analysis of a failed eruption and flare in active region 12018 on 2014 April 3 using multiwavelength observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, IRIS, STEREO, and Hinode/Solar Optical Telescope. At least four jets were observed to emanate from the cusp of this small active region (large bright point) with a null-point topology during the 2 hr prior to the slow rise of a filament. During the filament slow rise multiple plasma blobs were seen, most likely formed in a null-point current sheet near the cusp. The subsequent filament eruption, which was outside the IRIS field of view, was accompanied by a flare but remained confined. During the explosive flare reconnection phase, additional blobs appeared repetitively and moved bidirectionally within the flaring region below the erupting filament. The filament kinked, rotated, and underwent leg–leg reconnection as it rose, yet it failed to produce a coronal mass ejection. Tiny jet-like features in the fan loops were detected during the filament slow rise/preflare phase. We interpret them as signatures of reconnection between the ambient magnetic field and the plasmoids leaving the null-point sheet and streaming along the fan loops. We contrast our interpretation of these tiny jets, which occur within the large-scale context of a failed filament eruption, with the local nanoflare-heating scenario proposed by Antolin et al. 
    more » « less
  5. Context.Light bridges are bright, long, and narrow features that are typically connected to the formation or decay processes of sunspots and pores.

    Aims.The interaction of magnetic fields and plasma flows is investigated in the trailing part of an active region, where pores and magnetic knots evolve into a complex sunspot. The goal is to identify the photospheric and chromospheric processes, which transform the mainly vertical magnetic fields of pores into a sunspot with multiple umbral cores, light bridges, and rudimentary penumbrae.

    Methods.Conducting observations with a broad variety of telescopes and instruments provides access to different atmospheric layers and the changing morphology of features connected to strong magnetic fields. While the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) provides full-disk continuum images and line-of-sight magnetograms, the fine structure and flows around a pore can be deduced from high-resolution observations in various wavelengths as provided by theGoodeSolar Telescope (GST) at the Big Bear Solar Observatory (BBSO). Horizontal proper motions are evaluated applying local correlation tracking (LCT) to the available time series, whereas the connectivity of sunspot features can be established using the background-subtracted activity maps (BaSAMs).

    Results.Photospheric flow maps indicate radial outflows, where the light bridge connects to the surrounding granulation, whereas inflows are present at the border of the pores. In contrast, the chromospheric flow maps show strong radial outflows at superpenumbral scales, even in the absence of a penumbra in the photosphere. The region in between the two polarities is characterized by expanding granules creating strong divergence centers. Variations in BaSAMs follow locations of significant and persistent changes in and around pores. The resulting maps indicate low variations along the light bridge, as well as thin hairlines connecting the light bridge to the pores and strong variations at the border of pores. Various BaSAMs demonstrate the interaction of pores with the surrounding supergranular cell. The Hαline-of-sight velocity maps provide further insights into the flow structure, with twisted motions along some of the radial filaments around the pore with the light bridge. Furthermore, flows along filaments connecting the two polarities of the active region are pronounced in the line-of-sight velocity maps.

    Conclusions.The present observations reveal that even small-scale changes of plasma motions in and around pores are conducive to transform pores into sunspots. In addition, chromospheric counterparts of penumbral filaments appear much earlier than the penumbral filaments in the photosphere. Penumbra formation is aided by a stable magnetic feature that anchors the advection of magnetic flux and provides a connection to the surrounding supergranular cell, whereas continuously emerging flux and strong light bridges are counteragents that affect the appearance and complexity of sunspots and their penumbrae.

    more » « less