Abstract Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color.
more »
« less
The Sonora Substellar Atmosphere Models. II. Cholla: A Grid of Cloud-free, Solar Metallicity Models in Chemical Disequilibrium for the JWST Era
Abstract Exoplanet and brown dwarf atmospheres commonly show signs of disequilibrium chemistry. In the James Webb Space Telescope (JWST) era, high-resolution spectra of directly imaged exoplanets will allow the characterization of their atmospheres in more detail, and allow systematic tests for the presence of chemical species that deviate from thermochemical equilibrium in these atmospheres. Constraining the presence of disequilibrium chemistry in these atmospheres as a function of parameters such as their effective temperature and surface gravity will allow us to place better constraints on the physics governing these atmospheres. This paper is part of a series of works presenting the Sonora grid of atmosphere models. In this paper, we present a grid of cloud-free, solar metallicity atmospheres for brown dwarfs and wide-separation giant planets with key molecular species such as CH 4 , H 2 O, CO, and NH 3 in disequilibrium. Our grid covers atmospheres with T eff ∈ [500 K, 1300 K], log g ∈ [3.0, 5.5] (cgs) and an eddy diffusion parameter of log K zz = 2 , 4 and 7 (cgs). We study the effect of different parameters within the grid on the temperature and composition profiles of our atmospheres. We discuss their effect on the near-infrared colors of our model atmospheres and the detectability of CH 4 , H 2 O, CO, and NH 3 using the JWST. We compare our models against existing MKO and Spitzer observations of brown dwarfs and verify the importance of disequilibrium chemistry for T dwarf atmospheres. Finally, we discuss how our models can help constrain the vertical structure and chemical composition of these atmospheres.
more »
« less
- Award ID(s):
- 1910969
- PAR ID:
- 10384544
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 923
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 269
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Direct imaging studies have mainly used low-resolution spectroscopy ( R ∼ 20–100) to study the atmospheres of giant exoplanets and brown dwarf companions, but the presence of clouds has often led to degeneracies in the retrieved atmospheric abundances (e.g., carbon-to-oxygen ratio, metallicity). This precludes clear insights into the formation mechanisms of these companions. The Keck Planet Imager and Characterizer (KPIC) uses adaptive optics and single-mode fibers to transport light into NIRSPEC ( R ∼ 35,000 in the K band), and aims to address these challenges with high-resolution spectroscopy. Using an atmospheric retrieval framework based on petitRADTRANS , we analyze the KPIC high-resolution spectrum (2.29–2.49 μ m) and the archival low-resolution spectrum (1–2.2 μ m) of the benchmark brown dwarf HD 4747 B ( m = 67.2 ± 1.8 M Jup , a = 10.0 ± 0.2 au, T eff ≈ 1400 K). We find that our measured C/O and metallicity for the companion from the KPIC high-resolution spectrum agree with those of its host star within 1 σ –2 σ . The retrieved parameters from the K -band high-resolution spectrum are also independent of our choice of cloud model. In contrast, the retrieved parameters from the low-resolution spectrum are highly sensitive to our chosen cloud model. Finally, we detect CO, H 2 O, and CH 4 (volume-mixing ratio of log(CH 4 ) = −4.82 ± 0.23) in this L/T transition companion with the KPIC data. The relative molecular abundances allow us to constrain the degree of chemical disequilibrium in the atmosphere of HD 4747 B, and infer a vertical diffusion coefficient that is at the upper limit predicted from mixing length theory.more » « less
-
Abstract About 70%–80% of stars in our solar and Galactic neighborhood are M dwarfs. They span a range of low masses and temperatures relative to solar-type stars, facilitating molecule formation throughout their atmospheres. Standard stellar atmosphere models primarily designed for FGK stars face challenges when characterizing broadband molecular features in spectra of cool stars. Here, we introduce SPHINX —a new 1D self-consistent radiative–convective thermochemical equilibrium chemistry model grid of atmospheres and spectra for M dwarfs in low resolution ( R ∼ 250). We incorporate the latest precomputed absorption cross sections with pressure broadening for key molecules dominant in late-K, early/main-sequence-M stars. We then validate our grid models by determining fundamental properties ( T eff , log g , [M/H], radius, and C/O) for 10 benchmark M+G binary stars with known host metallicities and 10 M dwarfs with interferometrically measured angular diameters. Incorporating the Gaussian process inference tool Starfish , we account for correlated and systematic noise in low-resolution (spectral stitching of SpeX, SNIFS, and STIS) observations and derive robust estimates of fundamental M-dwarf atmospheric parameters. Additionally, we assess the influence of photospheric heterogeneity on inferred [M/H] and find that it could explain some deviations from observations. We also probe whether the adopted convective mixing length parameter influences inferred radii, effective temperature, and [M/H] and again find that may explain discrepancies between interferometric observations and model-derived parameters for cooler M dwarfs. Mainly, we show the unique strength in leveraging broadband molecular absorption features occurring in low-resolution M dwarf spectra and demonstrate the ability to improve constraints on fundamental properties of exoplanet hosts and brown-dwarf companions.more » « less
-
Abstract The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (∼200–400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate-resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species, like water, methane, and ammonia; species that trace chemical reactions, like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (Guaranteed Time Observation program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855–0714 (using NIRSpec G395M spectra), which has an effective temperature of ∼264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH3D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH3). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.more » « less
-
Context.Recent JWST observations have measured the ice chemical composition towards two highly extinguished background stars, NIR38 and J110621, in the Chamaeleon I molecular cloud. The observed excess of extinction on the long-wavelength side of the H2O ice band at 3 μm has been attributed to a mixture of CH3OH with ammonia hydrates NH3·H2O), which suggests that CH3OH ice in this cloud could have formed in a water-rich environment with little CO depletion. Laboratory experiments and quantum chemical calculations suggest that CH3OH could form via the grain surface reactions CH3+ OH and/or C + H2O in water-rich ices. However, no dedicated chemical modelling has been carried out thus far to test their efficiency. In addition, it remains unexplored how the efficiencies of the proposed mechanisms depend on the astrochemical code employed. Aims.We modelled the ice chemistry in the Chamaeleon I cloud to establish the dominant formation processes of CH3OH, CO, CO2, and of the hydrides CH4and NH3(in addition to H2O). By using a set of state-of-the-art astrochemical codes (MAGICKAL, MONACO, Nautilus, UCLCHEM, and KMC simulations), we can test the effects of the different code architectures (rate equation vs. stochastic codes) and of the assumed ice chemistry (diffusive vs. non-diffusive). Methods.We consider a grid of models with different gas densities, dust temperatures, visual extinctions, and cloud-collapse length scales. In addition to the successive hydrogenation of CO, the codes’ chemical networks have been augmented to include the alternative processes for CH3OH ice formation in water-rich environments (i.e. the reactions CH3+ OH → CH3OH and C + H2O → H2CO). Results.Our models show that the JWST ice observations are better reproduced for gas densities ≥105cm−3and collapse timescales ≥105yr. CH3OH ice formation occurs predominantly (>99%) via CO hydrogenation. The contribution of reactions CH3+ OH and C + H2O is negligible. The CO2ice may form either via CO + OH or CO + O depending on the code. However, KMC simulations reveal that both mechanisms are efficient despite the low rate of the CO + O surface reaction. CH4is largely underproduced for all codes except for UCLCHEM, for which a higher amount of atomic C is available during the translucent cloud phase of the models. Large differences in the predicted abundances are found at very low dust temperatures (Tdust<12 K) between diffusive and non-diffusive chemistry codes. This is due to the fact that non-diffusive chemistry takes over diffusive chemistry at such low Tdust. This could explain the rather constant ice chemical composition found in Chamaeleon I and other dense cores despite the different visual extinctions probed.more » « less
An official website of the United States government

