Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (
- Award ID(s):
- 1910969
- PAR ID:
- 10384544
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 923
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 269
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract d ≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJ band, no standard matches well across the fullYJHK wavelength range. The CWISE J105512.11+544328.3 NH3-H = 0.427 ± 0.0012 and CH4-J = 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g ) ≤ 4.5 andT eff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μ m color. -
Abstract Direct imaging studies have mainly used low-resolution spectroscopy ( R ∼ 20–100) to study the atmospheres of giant exoplanets and brown dwarf companions, but the presence of clouds has often led to degeneracies in the retrieved atmospheric abundances (e.g., carbon-to-oxygen ratio, metallicity). This precludes clear insights into the formation mechanisms of these companions. The Keck Planet Imager and Characterizer (KPIC) uses adaptive optics and single-mode fibers to transport light into NIRSPEC ( R ∼ 35,000 in the K band), and aims to address these challenges with high-resolution spectroscopy. Using an atmospheric retrieval framework based on petitRADTRANS , we analyze the KPIC high-resolution spectrum (2.29–2.49 μ m) and the archival low-resolution spectrum (1–2.2 μ m) of the benchmark brown dwarf HD 4747 B ( m = 67.2 ± 1.8 M Jup , a = 10.0 ± 0.2 au, T eff ≈ 1400 K). We find that our measured C/O and metallicity for the companion from the KPIC high-resolution spectrum agree with those of its host star within 1 σ –2 σ . The retrieved parameters from the K -band high-resolution spectrum are also independent of our choice of cloud model. In contrast, the retrieved parameters from the low-resolution spectrum are highly sensitive to our chosen cloud model. Finally, we detect CO, H 2 O, and CH 4 (volume-mixing ratio of log(CH 4 ) = −4.82 ± 0.23) in this L/T transition companion with the KPIC data. The relative molecular abundances allow us to constrain the degree of chemical disequilibrium in the atmosphere of HD 4747 B, and infer a vertical diffusion coefficient that is at the upper limit predicted from mixing length theory.more » « less
-
Abstract The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (∼200–400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate-resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species, like water, methane, and ammonia; species that trace chemical reactions, like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (Guaranteed Time Observation program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855–0714 (using NIRSpec G395M spectra), which has an effective temperature of ∼264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH3D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH3). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.
-
Abstract About 70%–80% of stars in our solar and Galactic neighborhood are M dwarfs. They span a range of low masses and temperatures relative to solar-type stars, facilitating molecule formation throughout their atmospheres. Standard stellar atmosphere models primarily designed for FGK stars face challenges when characterizing broadband molecular features in spectra of cool stars. Here, we introduce SPHINX —a new 1D self-consistent radiative–convective thermochemical equilibrium chemistry model grid of atmospheres and spectra for M dwarfs in low resolution ( R ∼ 250). We incorporate the latest precomputed absorption cross sections with pressure broadening for key molecules dominant in late-K, early/main-sequence-M stars. We then validate our grid models by determining fundamental properties ( T eff , log g , [M/H], radius, and C/O) for 10 benchmark M+G binary stars with known host metallicities and 10 M dwarfs with interferometrically measured angular diameters. Incorporating the Gaussian process inference tool Starfish , we account for correlated and systematic noise in low-resolution (spectral stitching of SpeX, SNIFS, and STIS) observations and derive robust estimates of fundamental M-dwarf atmospheric parameters. Additionally, we assess the influence of photospheric heterogeneity on inferred [M/H] and find that it could explain some deviations from observations. We also probe whether the adopted convective mixing length parameter influences inferred radii, effective temperature, and [M/H] and again find that may explain discrepancies between interferometric observations and model-derived parameters for cooler M dwarfs. Mainly, we show the unique strength in leveraging broadband molecular absorption features occurring in low-resolution M dwarf spectra and demonstrate the ability to improve constraints on fundamental properties of exoplanet hosts and brown-dwarf companions.more » « less
-
Abstract By combining the James Webb Space Telescope (JWST)/NIRCam JADES and CEERS extragalactic data sets, we have uncovered a sample of 21 T and Y brown dwarf candidates at best-fit distances between 0.1 and 4.2 kpc. These sources were selected by targeting the blue 1–2.5
μ m colors and red 3–4.5μ m colors that arise from molecular absorption in the atmospheres ofT eff< 1300 K brown dwarfs. We fit these sources using multiple models of substellar atmospheres and present the resulting fluxes, sizes, effective temperatures, and other derived properties for the sample. If confirmed, these fits place the majority of the sources in the Milky Way thick disk and halo. We observe proper motions for seven of the candidate brown dwarfs, with directions in agreement with the plane of our Galaxy, providing evidence that they are not extragalactic in nature. We demonstrate how the colors of these sources differ from selected high-redshift galaxies, and explore the selection of these sources in planned large-area JWST NIRCam surveys. Deep imaging with JWST/NIRCam presents an an excellent opportunity for finding and understanding these ultracool dwarfs at kiloparsec distances.