skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An embayment in the East Antarctic basement constrains the shape of the Rodinian continental margin
Abstract East Antarctic provinces lay at the heart of both Rodinian and Gondwanan supercontinents, yet poor exposure and limited geophysical data provide few constraints on the region’s tectonic evolution. The shape of the Mawson Continent, the stable nucleus of East Antarctica, is one of Antarctica’s most important, but contested features, with implications for global plate reconstructions and local tectonic models. Here we show a major marginal embayment 500–700 km wide, cuts into the East Antarctic basement in the South Pole region. This embayment, defined by new aeromagnetic and other geophysical data, truncates the Mawson Continent, which is distinct from basement provinces flanking the Weddell Sea. We favour a late Neoproterozoic rifting model for embayment formation and discuss analogies with other continental margins. The embayment and associated basement provinces help define the East Antarctic nucleus for supercontinental reconstructions, while the inherited marginal geometry likely influenced evolution of the paleo-Pacific margin of Gondwana.  more » « less
Award ID(s):
2137467 1643713
PAR ID:
10384558
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
3
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Unaweep Canyon (Uncompahgre Plateau, Colorado) represents an enigmatic landscape with a complex evolution. Interpretations for its origin have ranged from ancestral fluvial erosion in the late Cenozoic to glacial erosion in the Paleozoic, or some combination thereof, with significant implications for global climatic and large‐scale tectonic reconstructions. To address the conflicting interpretations, we acquired a high‐resolution seismic reflection profile to investigate the depth, structure, and sedimentary infill in the canyon. The data set is further complemented with an electrical resistivity survey. Integrated with other geophysical and geological data, the results show an overdeepened Precambrian basement with transverse U shape and support the hypothesis of a pre‐Quaternary glacial origin. Our data constitute the first detailed image of a buried pre‐Quaternary glacial valley in North America; if substantiated with core studies, these results have far‐reaching implications for our understanding of global ice houses as well as the tectonic conditions, enabling preservation of such systems. 
    more » « less
  2. Abstract We apply a machine learning (ML) earthquake detection technique on over 21 yr of seismic data from on-continent temporary and long-term networks to obtain the most complete catalog of seismicity in Antarctica to date. The new catalog contains 60,006 seismic events within the Antarctic continent for 1 January 2000–1 January 2021, with estimated moment magnitudes (Mw) between −1.0 and 4.5. Most detected seismicity occurs near Ross Island, large ice shelves, ice streams, ice-covered volcanoes, or in distinct and isolated areas within the continental interior. The event locations and waveform characteristics indicate volcanic, tectonic, and cryospheric sources. The catalog shows that Antarctica is more seismically active than prior catalogs would indicate, examples include new tectonic events in East Antarctica, seismic events near and around the vicinity of David Glacier, and many thousands of events in the Mount Erebus region. This catalog provides a resource for more specific studies using other detection and analysis methods such as template matching or transfer learning to further discriminate source types and investigate diverse seismogenic processes across the continent. 
    more » « less
  3. Kleinschmidt, Georg (Ed.)
    The work is Chapter Three in a volume that provides a comprehensive overview of the geology of the Antarctic continent. The book represents the first comprehensive update of Antarctic geology in 25 years or more. Knowledge of the geology of Antarctica -- even if based on the meager <2% of rock exposure for this continent-- has immeasurably increased over that quarter-century. Individual chapters cover the regional geology of the seven main physiographic regions of Antarctica: -the Antarctic Peninsula, -West Antarctica (Marie Byrd Land and Enderby Land), -Transantarctic Mountains, -the Shackleton Range and its surroundings (including the Bertrab, Littlewood and Moltke Nunataks), -Dronning Maud Land, -Lambert Glacier and the area surrounding it, -East Antarctica from Kaiser-Wilhelm-II.-Land to George V Land/Terre Adélie. Each chapter contains a topographic, historical and geological overview, a description of the respective geological units, their stratigraphy and related data and the tectonic structure of the respective region. The seven chapters were written by acknowledged specialists in their field who place the regional geology into a continent-wide/plate tectonic/geological context. 
    more » « less
  4. Abstract New geophysical data from Antarctica's Ross Embayment reveal the structure and subglacial geology of extended continental crust beneath the Ross Ice Shelf. We use airborne magnetic data from the ROSETTA‐Ice Project to locate the contact between magnetic basement and overlying sediments. We delineate a broad, segmented basement high with thin (0–500m) non‐magnetic sedimentary cover which trends northward into the Ross Sea's Central High. Before subsiding in the Oligocene, this feature likely facilitated early glaciation in the region and subsequently acted as a pinning point and ice flow divide. Flanking the high are wide sedimentary basins, up to 3700m deep, which parallel the Ross Sea basins and likely formed during Cretaceous‐Neogene intracontinental extension. NW‐SE basins beneath the Siple Coast grounding zone, by contrast, are narrow, deep, and elongate. They suggest tectonic divergence upon active faults that may localize geothermal heat and/or groundwater flow, both important components of the subglacial system. 
    more » « less
  5. The Princess Elizabeth Land sector of the East Antarctic Ice Sheet is a significant reservoir of grounded ice and is adjacent to regions that experienced great change during Quaternary glacial cycles and Pliocene warm episodes. The existence of an extensive subglacial water system in Princess Elizabeth Land (to date only inferred from satellite imagery) bears the potential to significantly impact the thermal and kinematic conditions of the overlying ice sheet. We confirm the existence of a major subglacial lake, herein referred to as Lake Snow Eagle (LSE), for the first time using recently acquired aerogeophysical data. We systematically investigated LSE’s geological characteristics and bathymetry from two-dimensional geophysical inversion models. The inversion results suggest that LSE is located along a compressional geologic boundary, which provides reference for future characterization of the geologic and tectonic context of this region. We estimate LSE to be ~42 km in length and 370 km2 in area, making it one of the largest subglacial lakes in Antarctica. Additionally, the airborne ice-penetrating radar observations and geophysical inversions reveal a layer of unconsolidated water-saturated sediment around and at the bottom of LSE, which—given the ultralow rates of sedimentation expected in such environments—may archive valuable records of paleoenvironmental changes and the early history of East Antarctic Ice Sheet evolution in Princess Elizabeth Land. 
    more » « less