skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Air pollution disparities and equality assessments of US national decarbonization strategies
Abstract Energy transitions and decarbonization require rapid changes to a nation’s electricity generation mix. There are many feasible decarbonization pathways for the electricity sector, yet there is vast uncertainty about how these pathways will advance or derail the nation’s energy equality goals. We present a framework for investigating how decarbonization pathways, driven by a least-cost paradigm, will impact air pollution inequality across vulnerable groups (e.g., low-income, minorities) in the US. We find that if no decarbonization policies are implemented, Black and high-poverty communities may be burdened with 0.19–0.22 μg/m3higher PM2.5concentrations than the national average during the energy transition. National mandates requiring more than 80% deployment of renewable or low-carbon technologies achieve equality of air pollution concentrations across all demographic groups. Thus, if least-cost optimization capacity expansion models remain the dominant decision-making paradigm, strict low-carbon or renewable energy technology mandates will have the greatest likelihood of achieving national distributional energy equality. Decarbonization is essential to achieving climate goals, but myopic decarbonization policies that ignore co-pollutants may leave Black and high-poverty communities up to 26–34% higher PM2.5exposure than national averages over the energy transition.  more » « less
Award ID(s):
2017789
PAR ID:
10384596
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To demonstrate how a mega city can lead in decarbonizing beyond legal mandates, the city of Los Angeles (LA) developed science-based, feasible pathways towards utilizing 100% renewable energy for its municipally-owned electric utility. Aside from decarbonization, renewable energy adoption can lead to co-benefits such as improving urban air quality from reductions in combustion-related emissions of oxides of nitrogen (NOx), primary fine particulate matter (PM2.5) and others. Herein, we quantify changes to air pollutant concentrations and public health from scenarios of 100% renewable electricity adoption in LA in 2045, alongside aggressive electrification of end-use sectors. Our analysis suggests that while ensuring reliable electricity supply, reductions in emissions of air pollutants associated with the 100% renewable electricity scenarios can lead to 8% citywide reductions of PM2.5concentration while increasing ozone concentration by 5% relative to a 2012 baseline year, given identical meteorology conditions. The combination of these concentration changes could result in net monetized public health benefits (driven by avoided deaths) of up to $1.4 billion in year 2045 in LA, results potentially replicable for other city-scale decarbonization scenarios. 
    more » « less
  2. With increasing focus on equitable and just energy transition, it is critical to understand the trade-offs of different decarbonization outcomes across economic, environmental, and social sustainability criteria. In this analysis, we use a multi-criteria decision analysis to quantify sustainability outcomes across 32 decarbonization outcomes in 2050 in the U.S. The economic sustainability criteria we use are system cost, national average retail rate, and electricity system employment. The environmental sustainability criteria we use are life cycle greenhouse gas emissions, life cycle water depletion, life cycle land transformation, and air pollution fatalities. The social sustainability (distributional impacts) criteria we use are retail rate equality across states, electricity employment equality across low-income households, and air pollution disparities across census tracts. We evaluate performance across these criteria under eleven different stakeholder preference scenarios. We find that decarbonization policies with indefinitely extended tax credits have the highest sustainability score under equal criteria weighting, with greater investments in renewable energy technologies, and result in better environmental, system cost, job, and air pollution disparities compared to mid-case scenarios, that only include current policies and CO2 reduction targets. We also see that our multi-criteria decision analysis identifies decarbonization outcomes that would not have been identified as optimal under a single objective, which highlights the importance of trade-off analyses to understand decarbonization outcomes more holistically. 
    more » « less
  3. Abstract Background The spatiotemporal variation of observed trace gases (NO 2 , SO 2 , O 3 ) and particulate matter (PM 2.5 , PM 10 ) were investigated over cities of Yangtze River Delta (YRD) region including Nanjing, Hefei, Shanghai and Hangzhou. Furthermore, the characteristics of different pollution episodes, i.e., haze events (visibility < 7 km, relative humidity < 80%, and PM 2.5  > 40 µg/m 3 ) and complex pollution episodes (PM 2.5  > 35 µg/m 3 and O 3  > 160 µg/m 3 ) were studied over the cities of the YRD region. The impact of China clean air action plan on concentration of aerosols and trace gases is examined. The impacts of trans-boundary pollution and different meteorological conditions were also examined. Results The highest annual mean concentrations of PM 2.5 , PM 10 , NO 2 and O 3 were found for 2019 over all the cities. The annual mean concentrations of PM 2.5 , PM 10 , and NO 2 showed continuous declines from 2019 to 2021 due to emission control measures and implementation of the Clean Air Action plan over all the cities of the YRD region. The annual mean O 3 levels showed a decline in 2020 over all the cities of YRD region, which is unprecedented since the beginning of the China’s National environmental monitoring program since 2013. However, a slight increase in annual O 3 was observed in 2021. The highest overall means of PM 2.5 , PM 10 , SO 2 , and NO 2 were observed over Hefei, whereas the highest O 3 levels were found in Nanjing. Despite the strict control measures, PM 2.5 and PM 10 concentrations exceeded the Grade-1 National Ambient Air Quality Standards (NAAQS) and WHO (World Health Organization) guidelines over all the cities of the YRD region. The number of haze days was higher in Hefei and Nanjing, whereas the complex pollution episodes or concurrent occurrence of O 3 and PM 2.5 pollution days were higher in Hangzhou and Shanghai. The in situ data for SO 2 and NO 2 showed strong correlation with Tropospheric Monitoring Instrument (TROPOMI) satellite data. Conclusions Despite the observed reductions in primary pollutants concentrations, the secondary pollutants formation is still a concern for major metropolises. The increase in temperature and lower relative humidity favors the accumulation of O 3 , while low temperature, low wind speeds and lower relative humidity favor the accumulation of primary pollutants. This study depicts different air pollution problems for different cities inside a region. Therefore, there is a dire need to continuous monitoring and analysis of air quality parameters and design city-specific policies and action plans to effectively deal with the metropolitan pollution. 
    more » « less
  4. Abstract Understanding the costs and the spatial distribution of health and employment outcomes of low-carbon electricity pathways is critical to enable an equitable transition. We integrate an electricity system planning model (GridPath), a health impact model (InMAP), and a multiregional input–output model to quantify China’s provincial-level impacts of electricity system decarbonization on costs, health outcomes, employment, and labor compensation. We find that even without specific CO2constraints, declining renewable energy and storage costs enable a 26% decline in CO2emissions in 2040 compared to 2020 under the Reference scenario. Compared to the Reference scenario, pursuing 2 °C and 1.5 °C compatible carbon emission targets (85% and 99% decrease in 2040 CO2emissions relative to 2020 levels, respectively) reduces air pollution-related premature deaths from electricity generation over 2020–2040 by 51% and 63%, but substantially increases annual average costs per unit of electricity demand in 2040 (21% and 39%, respectively). While the 2 °C pathway leads to a 3% increase in electricity sector-related net labor compensation, the 1.5 °C pathway results in a 19% increase in labor compensation driven by greater renewable energy deployment. Although disparities in health impacts across provinces narrow as fossil fuels phase out, disparities in labor compensation widen with wealthier East Coast provinces gaining the most in labor compensation because of materials and equipment manufacturing, and offshore wind deployment. 
    more » « less
  5. Abstract Heavy-duty vehicles (HDVs) disproportionately contribute to the creation of air pollutants and emission of greenhouse gases—with marginalized populations unequally burdened by the impacts of each. Shifting to non-emitting technologies, such as electric HDVs (eHDVs), is underway; however, the associated air quality and health implications have not been resolved at equity-relevant scales. Here we use a neighbourhood-scale (~1 km) air quality model to evaluate air pollution, public health and equity implications of a 30% transition of predominantly diesel HDVs to eHDVs over the region surrounding North America’s largest freight hub, Chicago, IL. We find decreases in nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentrations but ozone (O3) increases, particularly in urban settings. Over our simulation domain NO2and PM2.5reductions translate to ~590 (95% confidence interval (CI) 150–900) and ~70 (95% CI 20–110) avoided premature deaths per year, respectively, while O3increases add ~50 (95% CI 30–110) deaths per year. The largest pollutant and health benefits simulated are within communities with higher proportions of Black and Hispanic/Latino residents, highlighting the potential for eHDVs to reduce disproportionate and unjust air pollution and associated air-pollution attributable health burdens within historically marginalized populations. 
    more » « less