skip to main content


Search for: All records

Award ID contains: 2017789

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Energy transitions and decarbonization require rapid changes to a nation’s electricity generation mix. There are many feasible decarbonization pathways for the electricity sector, yet there is vast uncertainty about how these pathways will advance or derail the nation’s energy equality goals. We present a framework for investigating how decarbonization pathways, driven by a least-cost paradigm, will impact air pollution inequality across vulnerable groups (e.g., low-income, minorities) in the US. We find that if no decarbonization policies are implemented, Black and high-poverty communities may be burdened with 0.19–0.22 μg/m3higher PM2.5concentrations than the national average during the energy transition. National mandates requiring more than 80% deployment of renewable or low-carbon technologies achieve equality of air pollution concentrations across all demographic groups. Thus, if least-cost optimization capacity expansion models remain the dominant decision-making paradigm, strict low-carbon or renewable energy technology mandates will have the greatest likelihood of achieving national distributional energy equality. Decarbonization is essential to achieving climate goals, but myopic decarbonization policies that ignore co-pollutants may leave Black and high-poverty communities up to 26–34% higher PM2.5exposure than national averages over the energy transition.

     
    more » « less
  2. Abstract

    Income-based energy poverty metrics ignore people’s behavior patterns, particularly reducing energy consumption to limit financial stress. We investigate energy-limiting behavior in low-income households using a residential electricity consumption dataset. We first determine the outdoor temperature at which households start using cooling systems, the inflection temperature. Our relative energy poverty metric, theenergy equity gap, is defined as the difference in the inflection temperatures between low and high-income groups. In our study region, we estimate the energy equity gap to be between 4.7–7.5 °F (2.6–4.2 °C). Within a sample of 4577 households, we found 86 energy-poor and 214 energy-insecure households. In contrast, the income-based energy poverty metric, energy burden (10% threshold), identified 141 households as energy-insecure. Only three households overlap between our energy equity gap and the income-based measure. Thus, the energy equity gap reveals a hidden but complementary aspect of energy poverty and insecurity.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)