Abstract. Rejuvenation in particle filters is necessary to prevent the collapse of the weights when the number of particles is insufficient to properly sample the high-probability regions of the state space. Rejuvenation is often implemented in a heuristic manner by the addition of random noise that widens the support of the ensemble. This work aims at improving canonical rejuvenation methodology by the introduction of additional prior information obtained from climatological samples; the dynamical particles used for importance sampling are augmented with samples obtained from stochastic covariance shrinkage. A localized variant of the proposed method is developed.Numerical experiments with the Lorenz '63 model show that modified filters significantly improve the analyses for low dynamical ensemble sizes. Furthermore, localization experiments with the Lorenz '96 model show that the proposed methodology is extendable to larger systems.
more »
« less
Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Abstract. This paper presents the results of the ensemble Riemannian data assimilation for relatively high-dimensional nonlinear dynamical systems, focusing on the chaotic Lorenz-96 model and a two-layer quasi-geostrophic (QG) model of atmospheric circulation. The analysis state in this approach is inferred from a joint distribution that optimally couples the background probability distribution and the likelihood function, enabling formal treatment of systematic biases without any Gaussian assumptions. Despite the risk of the curse of dimensionality in the computation of the coupling distribution, comparisons with the classic implementation of the particle filter and the stochastic ensemble Kalman filter demonstrate that, with the same ensemble size, the presented methodology could improve the predictability of dynamical systems. In particular, under systematic errors, the root mean squared error of the analysis state can be reduced by 20 % (30 %) in the Lorenz-96 (QG) model.
more »
« less
- PAR ID:
- 10384610
- Date Published:
- Journal Name:
- Nonlinear Processes in Geophysics
- Volume:
- 29
- Issue:
- 1
- ISSN:
- 1607-7946
- Page Range / eLocation ID:
- 77 to 92
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hoteit, Ibrahim (Ed.)A hybrid particle ensemble Kalman filter is developed for problems with medium non-Gaussianity, i.e. problems where the prior is very non-Gaussian but the posterior is approximately Gaussian. Such situations arise, e.g., when nonlinear dynamics produce a non-Gaussian forecast but a tight Gaussian likelihood leads to a nearly-Gaussian posterior. The hybrid filter starts by factoring the likelihood. First the particle filter assimilates the observations with one factor of the likelihood to produce an intermediate prior that is close to Gaussian, and then the ensemble Kalman filter completes the assimilation with the remaining factor. How the likelihood gets split between the two stages is determined in such a way to ensure that the particle filter avoids collapse, and particle degeneracy is broken by a mean-preserving random orthogonal transformation. The hybrid is tested in a simple two-dimensional (2D) problem and a multiscale system of ODEs motivated by the Lorenz-‘96 model. In the 2D problem it outperforms both a pure particle filter and a pure ensemble Kalman filter, and in the multiscale Lorenz-‘96 model it is shown to outperform a pure ensemble Kalman filter, provided that the ensemble size is large enough.more » « less
-
Abstract Data assimilation (DA) aims to combine observations/data with a model to maximize the utility of information for obtaining the optimal estimate. The maximum likelihood ensemble filter (MLEF) is a sequential DA method or a filter-type method. Weaknesses of the filter method are assimilating time-integrated observations and estimating empirical parameter estimation. The reason is that the forward model is employed outside of the analysis procedure in this type of DA method. To overcome these weaknesses, the MLEF is now extended as a smoother and the novel maximum likelihood ensemble smoother (MLES) is proposed. The MLES is a smoothing method with variational-like qualities, specifically in the cost function. Rather than using the error information from a single temporal location to solve for the optimal analysis update as done by the MLEF, the MLES can include observations and the forward model within a chosen time window. The newly proposed DA method is first validated by a series of rigorous and thorough performance tests using the Lorenz 96 model. Then, as DA is known to be used extensively to increase the predictability of the commonly chaotic dynamical systems seen in meteorological applications, this study demonstrates the MLES with a model chaotic problem governed by the 1D Kuramoto–Sivashinky (KS) equation. Additionally, the MLES is shown to be an effective method in improving the estimate of uncertain empirical model parameters. The MLES and MLEF are then directly compared and it is shown that the performance of the MLES is adequate and that it is a good candidate for increasing the predictability of a chaotic dynamical system. Future work will focus on an extensive application of the MLES to highly turbulent flows.more » « less
-
Abstract We derive a generalization of the Kalman filter that allows for non‐Gaussian background and observation errors. The Gaussian assumption is replaced by considering that the errors come from a mixed distribution of Gaussian, lognormal, and reverse lognormal random variables. We detail the derivation for reverse lognormal errors and extend the results to mixed distributions, where the number of Gaussian, lognormal, and reverse lognormal state variables can change dynamically every analysis time. We test the dynamical mixed Kalman filter robustly on two different systems based on the Lorenz 1963 model, and demonstrate that non‐Gaussian techniques generally improve the analysis skill if the observations are sparse and uncertain, compared with the Gaussian Kalman filter.more » « less
-
Abstract. Ever since its inception, the ensemble Kalman filter (EnKF) has elicited many heuristic approaches that sought to improve it. One such method is covariance localization, which alleviates spurious correlations due to finite ensemble sizes by using relevant spatial correlation information. Adaptive localization techniques account for how correlations change in time and space, in order to obtain improved covariance estimates. This work develops a Bayesian approach to adaptive Schur-product localization for the deterministic ensemble Kalman filter (DEnKF) and extends it to support multiple radii of influence. We test the proposed adaptive localization using the toy Lorenz'96 problem and a more realistic 1.5-layer quasi-geostrophic model. Results with the toy problem show that the multivariate approach informs us that strongly observed variables can tolerate larger localization radii. The univariate approach leads to markedly improved filter performance for the realistic geophysical model, with a reduction in error by as much as 33 %.more » « less
An official website of the United States government

