skip to main content

Title: A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions
Abstract. Ever since its inception, the ensemble Kalman filter (EnKF) has elicited many heuristic approaches that sought to improve it. One such method is covariance localization, which alleviates spurious correlations due to finite ensemble sizes by using relevant spatial correlation information. Adaptive localization techniques account for how correlations change in time and space, in order to obtain improved covariance estimates. This work develops a Bayesian approach to adaptive Schur-product localization for the deterministic ensemble Kalman filter (DEnKF) and extends it to support multiple radii of influence. We test the proposed adaptive localization using the toy Lorenz'96 problem and a more realistic 1.5-layer quasi-geostrophic model. Results with the toy problem show that the multivariate approach informs us that strongly observed variables can tolerate larger localization radii. The univariate approach leads to markedly improved filter performance for the realistic geophysical model, with a reduction in error by as much as 33 %.
Authors:
;
Award ID(s):
1709727
Publication Date:
NSF-PAR ID:
10133861
Journal Name:
Nonlinear Processes in Geophysics
Volume:
26
Issue:
2
Page Range or eLocation-ID:
109 to 122
ISSN:
1607-7946
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through the inclusion of cross-domain terms in the background error covariance matrix.When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work, we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari–Cohn localization function; the within-component localization functions are standard Gaspari–Cohn with different localization radii, while the cross-localization function is newly constructed. The functions produce positive semidefinite localization matrices which are suitable for use in both Kalman filters and variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate and weakly coupled analogs of all four functions in a simple experiment with the bivariate Lorenz 96 system. In our experiments, the multivariate Gaspari–Cohn function leads to better performance than any of the other multivariate localization functions.
  2. Abstract The ensemble Kalman filter (EnKF) is a popular technique for data assimilation in high-dimensional nonlinear state-space models. The EnKF represents distributions of interest by an ensemble, which is a form of dimension reduction that enables straightforward forecasting even for complicated and expensive evolution operators. However, the EnKF update step involves estimation of the forecast covariance matrix based on the (often small) ensemble, which requires regularization. Many existing regularization techniques rely on spatial localization, which may ignore long-range dependence. Instead, our proposed approach assumes a sparse Cholesky factor of the inverse covariance matrix, and the nonzero Cholesky entries are further regularized. The resulting method is highly flexible and computationally scalable. In our numerical experiments, our approach was more accurate and less sensitive to misspecification of tuning parameters than tapering-based localization.
  3. This study is motivated by the fact that localization in Vehicle-to-Vehicle communication becomes a more critical problem because both the terminals of the communication link are in motion. The positional awareness merely based on GPS or local sensors has an error margin of around 10 meters, which can worsen in uncertain real-time conditions such as road topology and highway traffic. The paper analyses the relation between beamforming and beam alignment for highly directive antennas. This is more challenging in the events of localization of transceivers. When the subsystem models presented in this paper are taken into consideration, the joint vehicle dynamics-beamforming approach will improve the SNR for a constant power gain. The vehicle dynamics model is designed to be more realistic considering the non-linear acceleration based on the throttle-brake jerks due to internal engine noises as well as external traffic conditions. The prediction subsystem highlights the flaws of the Kalman Filter for non-linear parameters and the need for an Unscented Kalman Filter. The beamforming strategies are supported by the requirements of localization and the hardware constraints on the antenna due to phase shifters and the number of elements to yield more realistic results.
  4. To improve Thermosphere–Ionosphere modeling during disturbed conditions, data assimilation schemes that can account for the large and fast-moving gradients moving through the modeled domain are necessary. We argue that this requires a physics based background model with a non-stationary covariance. An added benefit of using physics-based models would be improved forecasting capability over largely persistence-based forecasts of empirical models. As a reference implementation, we have developed an ensemble Kalman Filter (enKF) software called Thermosphere Ionosphere Data Assimilation (TIDA) using the physics-based Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model as the background. In this paper, we present detailed results from experiments during the 2003 Halloween Storm, 27–31 October 2003, under very disturbed ( K p  = 9) conditions while assimilating GRACE-A and B, and CHAMP neutral density measurements. TIDA simulates this disturbed period without using the L1 solar wind measurements, which were contaminated by solar energetic protons, by estimating the model drivers from the density measurements. We also briefly present statistical results for two additional storms: September 27 – October 2, 2002, and July 26 – 30, 2004, to show that the improvement in assimilated neutral density specification is not an artifact of the corrupted forcing observations during the 2003 Halloween Storm.more »By showing statistical results from assimilating one satellite at a time, we show that TIDA produces a coherent global specification for neutral density throughout the storm – a critical capability in calculating satellite drag and debris collision avoidance for space traffic management.« less
  5. It can be expensive and difficult to collect direct bathymetry data for nearshore regions, especially in high-energy locations where there are temporally and spatially varying bathymetric features like sandbars. As a result, there has been increasing interest in remote assessment techniques for estimating bathymetry. Recent efforts have combined Kalman filter–based techniques with indirect video-based observations for bathymetry inversion. Here, we estimate nearshore bathymetry by utilizing observed wave celerity and wave height, which are related to bathymetry through phase-averaged wave dynamics. We present a modified compressed-state Kalman filter (CSKF) method, a fast and scalable Kalman filter method for linear and nonlinear problems with large numbers of unknowns and measurements, and apply it to two nearshore bathymetry estimation problems. To illustrate the robustness and accuracy of our method, we compare its performance with that of two ensemble-based approaches on twin bathymetry estimation problems with profiles based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, North Carolina. We first consider an estimation problem for a temporally constant bathymetry profile. Then we estimate bathymetry as it evolves in time. Our results indicate that the CSKF method is more accurate and robust than the ensemble-based methods withmore »the same computational cost. The superior performance is due to the optimal low-rank representation of the covariance matrices.

    « less