skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The maximum likelihood ensemble smoother for the Kuramoto–Sivashinsky equation
Abstract Data assimilation (DA) aims to combine observations/data with a model to maximize the utility of information for obtaining the optimal estimate. The maximum likelihood ensemble filter (MLEF) is a sequential DA method or a filter-type method. Weaknesses of the filter method are assimilating time-integrated observations and estimating empirical parameter estimation. The reason is that the forward model is employed outside of the analysis procedure in this type of DA method. To overcome these weaknesses, the MLEF is now extended as a smoother and the novel maximum likelihood ensemble smoother (MLES) is proposed. The MLES is a smoothing method with variational-like qualities, specifically in the cost function. Rather than using the error information from a single temporal location to solve for the optimal analysis update as done by the MLEF, the MLES can include observations and the forward model within a chosen time window. The newly proposed DA method is first validated by a series of rigorous and thorough performance tests using the Lorenz 96 model. Then, as DA is known to be used extensively to increase the predictability of the commonly chaotic dynamical systems seen in meteorological applications, this study demonstrates the MLES with a model chaotic problem governed by the 1D Kuramoto–Sivashinky (KS) equation. Additionally, the MLES is shown to be an effective method in improving the estimate of uncertain empirical model parameters. The MLES and MLEF are then directly compared and it is shown that the performance of the MLES is adequate and that it is a good candidate for increasing the predictability of a chaotic dynamical system. Future work will focus on an extensive application of the MLES to highly turbulent flows.  more » « less
Award ID(s):
1723191
PAR ID:
10421597
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IMA Journal of Applied Mathematics
Volume:
87
Issue:
6
ISSN:
0272-4960
Page Range / eLocation ID:
935 to 963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. This paper presents the results of the ensemble Riemannian data assimilation for relatively high-dimensional nonlinear dynamical systems, focusing on the chaotic Lorenz-96 model and a two-layer quasi-geostrophic (QG) model of atmospheric circulation. The analysis state in this approach is inferred from a joint distribution that optimally couples the background probability distribution and the likelihood function, enabling formal treatment of systematic biases without any Gaussian assumptions. Despite the risk of the curse of dimensionality in the computation of the coupling distribution, comparisons with the classic implementation of the particle filter and the stochastic ensemble Kalman filter demonstrate that, with the same ensemble size, the presented methodology could improve the predictability of dynamical systems. In particular, under systematic errors, the root mean squared error of the analysis state can be reduced by 20 % (30 %) in the Lorenz-96 (QG) model. 
    more » « less
  2. Hoteit, Ibrahim (Ed.)
    A hybrid particle ensemble Kalman filter is developed for problems with medium non-Gaussianity, i.e. problems where the prior is very non-Gaussian but the posterior is approximately Gaussian. Such situations arise, e.g., when nonlinear dynamics produce a non-Gaussian forecast but a tight Gaussian likelihood leads to a nearly-Gaussian posterior. The hybrid filter starts by factoring the likelihood. First the particle filter assimilates the observations with one factor of the likelihood to produce an intermediate prior that is close to Gaussian, and then the ensemble Kalman filter completes the assimilation with the remaining factor. How the likelihood gets split between the two stages is determined in such a way to ensure that the particle filter avoids collapse, and particle degeneracy is broken by a mean-preserving random orthogonal transformation. The hybrid is tested in a simple two-dimensional (2D) problem and a multiscale system of ODEs motivated by the Lorenz-‘96 model. In the 2D problem it outperforms both a pure particle filter and a pure ensemble Kalman filter, and in the multiscale Lorenz-‘96 model it is shown to outperform a pure ensemble Kalman filter, provided that the ensemble size is large enough. 
    more » « less
  3. We present a non‐Gaussian ensemble data assimilation method based on the maximum‐likelihood ensemble filter, which allows for any combination of Gaussian, lognormal, and reverse lognormal errors in both the background and the observations. The technique is fully nonlinear, does not require a tangent linear model, and uses a Hessian preconditioner to minimise the cost function efficiently in ensemble space. When the Gaussian assumption is relaxed, the results show significant improvements in the analysis skill within two atmospheric toy models, and the performance of data assimilation systems for (semi)bounded variables is expected to improve. 
    more » « less
  4. Abstract of Purpose and Method: The Lake-Effect Snow Ensemble Reanalysis version 1.0 dataset contains hourly gridded atmospheric variables for the Great Lakes region, focusing on events during the NSF OWLeS field campaign, which took place in December 2013 and January 2014. A reanalysis represents the best estimate of the state of the atmosphere by combining observations that are sparse in space and time with a dynamical model and weighting them by their uncertainties. This reanalysis uses the Penn State University Ensemble Kalman Filter (PSU EnKF) for data assimilation with Weather Research and Forecasting (WRF) model. Observations that are assimilated include conventional surface and atmospheric observations from NOAA. The dataset includes gridded fields of temperature, wind, surface pressure, and precipitation fields, and is downloadable as netCDF files. Companion papers, cited below, further describe this dataset as well as apply it to scientific studies. 
    more » « less
  5. The optimal receiver operating characteristic (ROC) curve, giving the maximum probability of detection as a function of the probability of false alarm, is a key information-theoretic indicator of the difficulty of a binary hypothesis testing problem (BHT). It is well known that the optimal ROC curve for a given BHT, corresponding to the likelihood ratio test, is theoretically determined by the probability distribution of the observed data under each of the two hypotheses. In some cases, these two distributions may be unknown or computationally intractable, but independent samples of the likelihood ratio can be observed. This raises the problem of estimating the optimal ROC for a BHT from such samples. The maximum likelihood estimator of the optimal ROC curve is derived, and it is shown to converge to the true optimal ROC curve in the \levy\ metric, as the number of observations tends to infinity. A classical empirical estimator, based on estimating the two types of error probabilities from two separate sets of samples, is also considered. The maximum likelihood estimator is observed in simulation experiments to be considerably more accurate than the empirical estimator, especially when the number of samples obtained under one of the two hypotheses is small. The area under the maximum likelihood estimator is derived; it is a consistent estimator of the true area under the optimal ROC curve. 
    more » « less