skip to main content


Title: The Integration of Photonic Crystal Waveguides with Atom Arrays in Optical Tweezers
Abstract

Integrating nanophotonics and cold atoms has drawn increasing interest in recent years due to diverse applications in quantum information science and the exploration of quantum many‐body physics. For example, dispersion‐engineered photonic crystal waveguides (PCWs) permit not only stable trapping and probing of ultracold neutral atoms via interactions with guided‐mode light, but also the possibility to explore the physics of strong, photon‐mediated interactions between atoms, as well as atom‐mediated interactions between photons. While diverse theoretical opportunities involving atoms and photons in 1D and 2D nanophotonic lattices have been analyzed, a grand challenge remains the experimental integration of PCWs with ultracold atoms. Here, an advanced apparatus that overcomes several significant barriers to current experimental progress is described, with the goal of achieving strong quantum interactions of light and matter by way of single‐atom tweezer arrays strongly coupled to photons in 1D and 2D PCWs. Principal technical advances relate to efficient free‐space coupling of light to and from guided modes of PCWs, silicate bonding of silicon chips within small glass vacuum cells, and deterministic, mechanical delivery of single‐atom tweezer arrays to the near fields of photonic crystal waveguides.

 
more » « less
NSF-PAR ID:
10384658
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
3
Issue:
11
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In fully-inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay that results in a rapid release of energy as a photon burst. While originally studied in point-like ensembles, this phenomenon persists in extended ordered systems if the inter-particle distance is below a certain bound. Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline earth(-like) atoms, such as strontium and ytterbium. Such atoms offer exciting new opportunities for light-matter interaction as their internal structure offers the possibility of trapping at short interatomic distances compared to their strong long-wavelength transitions, providing the potential for strong collectively modified interactions. Despite their intricate electronic structure, we show that two-dimensional arrays of these atomic species should exhibit many-body superradiance for achievable lattice constants. Moreover, superradiance effectively ''closes'' transitions, such that multilevel atoms become more two-level like. This occurs because the avalanche-like decay funnels the emission of most photons into the dominant transition, overcoming the single-atom decay ratios dictated by their fine structure and Zeeman branching. Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources and as dissipative generators of entanglement. 
    more » « less
  2. Abstract

    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published inThe Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.

     
    more » « less
  3. Abstract

    The promise of universal quantum computing requires scalable single‐ and inter‐qubit control interactions. Currently, three of the leading candidate platforms for quantum computing are based on superconducting circuits, trapped ions, and neutral atom arrays. However, these systems have strong interaction with environmental and control noises that introduce decoherence of qubit states and gate operations. Alternatively, photons are well decoupled from the environment and have advantages of speed and timing for quantum computing. Photonic systems have already demonstrated capability for solving specific intractable problems like Boson sampling, but face challenges for practically scalable universal quantum computing solutions because it is extremely difficult for a single photon to “talk” to another deterministically. Here, a universal distributed quantum computing scheme based on photons and atomic‐ensemble‐based quantum memories is proposed. Taking the established photonic advantages, two‐qubit nonlinear interaction is mediated by converting photonic qubits into quantum memory states and employing Rydberg blockade for the controlled gate operation. Spatial and temporal scalability of this scheme is demonstrated further. These results show photon‐atom network hybrid approach can be a potential solution to universal distributed quantum computing.

     
    more » « less
  4. Abstract

    The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+spins (Fe3+magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.

     
    more » « less
  5. Abstract

    Atomic systems, ranging from trapped ions to ultracold and Rydberg atoms, offer unprecedented control over both internal and external degrees of freedom at the single‐particle level. They are considered among the foremost candidates for realizing quantum simulation and computation platforms that can outperform classical computers at specific tasks. In this work, a realistic experimental toolbox for quantum information processing with neutral alkaline‐earth‐like atoms in optical tweezer arrays is described. In particular, a comprehensive and scalable architecture based on a programmable array of alkaline‐earth‐like atoms is proposed, exploiting their electronic clock states as a precise and robust auxiliary degree of freedom, and thus allowing for efficient all‐optical one‐ and two‐qubit operations between nuclear spin qubits. The proposed platform promises excellent performance thanks to high‐fidelity register initialization, rapid spin‐exchange gates, and error detection in read‐out. As a benchmark and application example, the expected fidelity of an increasing number of subsequent SWAP gates for optimal parameters is computed, which can be used to distribute entanglement between remote atoms within the array.

     
    more » « less