- Award ID(s):
- 1821664
- Publication Date:
- NSF-PAR ID:
- 10384676
- Journal Name:
- Advances in Physiology Education
- Volume:
- 44
- Issue:
- 2
- Page Range or eLocation-ID:
- 131 to 137
- ISSN:
- 1043-4046
- Sponsoring Org:
- National Science Foundation
More Like this
-
With large enrollments (about 200-350) of primarily non-majors, engaging students in the required introductory materials science and engineering course at our university has been a longstanding challenge. In moving to the virtual format in the fall of 2020, we significantly adapted several aspects of the course, many of which have continued to the hybrid format in future semesters, with good results. The primary content was provided through asynchronous videos; this format allowed us to break content into digestible pieces. In particular, multiple mini-lectures and example videos were pre-recorded for each week, with a total viewing time per week somewhat less than the typical total class time. To provide real-time, structured interaction, one live virtual class session per week was held, centered on previously submitted student questions. Smaller teaching-assistant-led recitation sections also met live (virtually or in person), during which “clicker” questions were asked through TopHat. Assignments were also updated to take advantage of the virtual format. Multiple small assignments with lower stakes were due throughout the week: a reading/lecture quiz, a survey to submit questions, and a shortened homework assignment. Finally, we changed some content near the end of the course to allow students to connect the course to theirmore »
-
Abstract Background There is overwhelming evidence that evidence-based teaching improves student performance; however, traditional lecture predominates in STEM courses. To provide support as faculty transform their lecture-based classrooms with evidence-based teaching practices, we created a faculty development program based on best practices, Consortium for the Advancement of Undergraduate STEM Education (CAUSE). CAUSE paired exploration of evidence-based teaching with support for classroom implementation over two years. Each year for three years, CAUSE recruited cohorts of faculty from seven STEM departments. Faculty met biweekly to discuss evidence-based teaching and receive feedback on their implementation. We used the PORTAAL observation tool to document evidence-based teaching practices (PORTAAL practices) across four randomly chosen class sessions each term. We investigated if the number of PORTAAL practices used or the amount of practices increased during the program.
Results We identified identical or equivalent course offerings taught at least twice by the same faculty member while in CAUSE (
n = 42 course pairs). We used a one-way repeated measures within-subjects multivariate analysis to examine the changes in average use of 14 PORTAAL practices between the first and second timepoint. We created heat maps to visualize the difference in number of practices used and changes in level of implementation of each PORTAAL practice. Post-hocmore »Conclusions Results suggest that participation in a long-term faculty development program can support increased use of evidence-based teaching practices which have been shown to improve student exam performance. Our findings can help prioritize the efforts of future faculty development programs.
-
Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills withinmore »
-
This work in progress paper discusses preliminary research testing the causal effectiveness of exploratory learning in undergraduate STEM courses. Exploratory learning is an active-learning technique that has been shown to improve students’ conceptual understanding, and is therefore well suited for STEM education. This method reverses the order of traditional lecture-then practice methods, by having students explore a novel problem prior to instruction. Participants (N=150) were first-year engineering students enrolled in an introductory engineering calculus course. Students were taught about two-dimensional vectors in an online, asynchronous learning module. Students were randomly assigned to one of two conditions. In the instruct-first condition, students viewed the instruction and then completed a Geogebra™ activity. In the explore-first condition, students completed the activity and then viewed the instruction. Thus, the exact same activities were given to students, allowing us to test the causal effectiveness of reversing the placement of the activity. Afterwards, all students completed an online quiz and a later Vector test. A number of students opened but did not complete the activity. Of those students, no effects of condition were found. For the students who completed the activity, those in the explore-first condition scored higher on the quiz than those in the instruct-firstmore »
-
This complete evidence-based practice paper discusses the strategies and results of an introduction to mechanics course, designed to prepare students for introductory-level physics and other fundamental courses in engineering, such as statics, strength of materials, and dynamics. The course was developed to address historically high failure (DFW) rates in the physics courses and is part of a set of interventions implemented to support student success in a college of engineering and computer science. The course focuses on providing in-depth understanding of Newton’s Laws of motion, free-body diagrams, and linear and projectile motion. Because it focuses on a limited number of competencies, it is possible to spend more time on inquiry-based activities and in-class discussions. The course framework was designed considering the Ebbinghaus’ Forgetting Curve, to provide students with learning opportunities in 6-day cycles: (i) day 1: a pre-class learning activity (reading or video) and a quiz; (ii) day 2: in-class Kahoot low-stakes quiz with discussion, a short lecture with embedded time for problem-solving and discussion, and in-class activities (labs, group projects); (iii) day 4: homework due two days after the class; (iv) day 6: homework self-reflection (autopsy based on provided solutions) two days after homework is due. The assessment ofmore »