Abstract The meroplanktonic larvae of many invertebrate and vertebrate species rely on physical transport to move them across the shelf to their adult habitats. One potential mechanism for cross‐shore larval transport is Stokes drift in internal waves. Here, we develop theory to quantify the Stokes velocities of neutrally buoyant and depth‐keeping organisms in linear internal waves in shallow water. We apply the analyses to theoretical and measured internal wave fields, and compare results with a numerical model. Near the surface and bottom boundaries, both neutrally buoyant and depth‐keeping organisms were transported in the direction of the wave's phase propagation. However, neutrally buoyant organisms were transported in the opposite direction of the wave's phase at mid depths, while depth‐keeping organisms had zero net transport there. Weakly depth‐keeping organisms had Stokes drifts between the perfectly depth‐keeping and neutrally buoyant organisms. For reasonable wave amplitudes and phase speeds, organisms would experience horizontal Stokes speeds of several centimeters per second—or a few kilometers per day in a constant wave field. With onshore‐polarized internal waves, Stokes drift in internal waves presents a predictable mechanism for onshore transport of meroplanktonic larvae and other organisms near the surface, and offshore transport at mid depths. 
                        more » 
                        « less   
                    
                            
                            Fate of Internal Waves on a Shallow Shelf
                        
                    
    
            Abstract Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow shelf slope region in the South China Sea. The spatially continuous view of temperature fields provides a perspective of physical processes commonly available only in laboratory settings or numerical models, including internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, and observations of internal rundown (near‐bed, offshore‐directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf—whether transmitted into shallow waters or reflected back offshore—is mediated by local water column density structure and background currents set by the previous shoaling internal waves, highlighting the importance of wave‐wave interactions in nearshore internal wave dynamics. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10384733
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 125
- Issue:
- 5
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Although typically used to measure dynamic strain from seismic and acoustic waves, Rayleigh‐based distributed acoustic sensing (DAS) is also sensitive to temperature, offering longer range and higher sensitivity to small temperature perturbations than conventional Raman‐based distributed temperature sensing. Here, we demonstrate that ocean‐bottom DAS can be employed to study internal wave and tide dynamics in the bottom boundary layer, a region of enhanced ocean mixing but scarce observations. First, we show temperature transients up to about 4 K from a power cable in the Strait of Gibraltar south of Spain, associated with passing trains of internal solitary waves in water depth <200 m. Second, we show the propagation of thermal fronts associated with the nonlinear internal tide on the near‐critical slope of the island of Gran Canaria, off the coast of West Africa, with perturbations up to about 2 K at 1‐km depth and 0.2 K at 2.5‐km depth. With spatial averaging, we also recover a signal proportional to the barotropic tidal pressure, including the lunar fortnightly variation. In addition to applications in observational physical oceanography, our results suggest that contemporary chirped‐pulse DAS possesses sufficient long‐period sensitivity for seafloor geodesy and tsunami monitoring if ocean temperature variations can be separated.more » « less
- 
            Abstract Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 4‐km cross‐reef section from the lagoon to 50‐m depth on the fore reef. Our observations show that during summer, internal waves shoaling on the shallow atoll regularly transport cold, nutrient‐rich water shoreward, altering near‐surface water properties on the fore reef. This water is transported shoreward of the reef crest by tides, breaking surface waves and wind‐driven flow, where it significantly alters the water temperature and nutrient concentrations on the reef flat. We find that without internal wave forcing on the fore reef, temperatures on the reef flat could be up to 2.0°C ± 0.2°C warmer. Additionally, we estimate a change in degree heating weeks of 0.7°C‐weeks warmer without internal waves, which significantly increases the probability of a more severe bleaching event occurring at Dongsha Atoll. Furthermore, using nutrient samples collected on the fore reef during the study, we estimated that instantaneous onshore nitrate flux is about four‐fold higher with internal waves than without internal waves. This work highlights the importance of internal waves as a physical mechanism shaping the nearshore environment, and likely supporting resilience of the reef.more » « less
- 
            Abstract Rip currents are generated by surfzone wave breaking and are ejected offshore inducing inner-shelf flow spatial variability (eddies). However, surfzone effects on the inner-shelf flow spatial variability have not been studied in realistic models that include both shelf and surfzone processes. Here, these effects are diagnosed with two nearly identical twin realistic simulations of the San Diego Bight over summer to fall where one simulation includes surface gravity waves (WW) and the other that does not (NW). The simulations include tides, weak to moderate winds, internal waves, submesoscale processes, and have surfzone width L sz of 96(±41) m (≈ 1 m significant wave height). Flow spatial variability metrics, alongshore root mean square vorticity, divergence, and eddy cross-shore velocity, are analyzed in a L sz normalized cross-shore coordinate. At the surface, the metrics are consistently (> 70%) elevated in the WW run relative to NW out to 5 L sz offshore. At 4 L sz offshore, WW metrics are enhanced over the entire water column. In a fixed coordinate appropriate for eddy transport, the eddy cross-shore velocity squared correlation betweenWWand NW runs is < 0.5 out to 1.2 km offshore or 12 time-averaged L sz . The results indicate that the eddy tracer ( e.g. , larvae) transport and dispersion across the inner-shelf will be significantly different in the WW and NW runs. The WW model neglects specific surfzone vorticity generation mechanisms. Thus, these inner-shelf impacts are likely underestimated. In other regions with larger waves, impacts will extend farther offshore.more » « less
- 
            Abstract Space- and time-continuous seafloor temperature observations captured the three-dimensional structure of shoaling nonlinear internal waves (NLIWs) off of La Jolla, California. NLIWs were tracked for hundreds of meters in the cross- and along-shelf directions using a fiber optic Distributed Temperature Sensing (DTS) seafloor array, complemented by an ocean-wave-powered vertical profiling mooring. Trains of propagating cold-water pulses were observed on the DTS array inshore of the location of polarity transition predicted by weakly nonlinear internal wave theory. The subsequent evolution of the temperature signatures during shoaling was consistent with that of strongly nonlinear internal waves with a large Froude number, highlighting their potential to impact property exchange. Unexpectedly, individual NLIWs were trailed by a coherent, small-scale pattern of seabed temperature variability as they moved across the mid- and inner shelf. A kinematic model was used to demonstrate that the observed patterns were consistent with a transverse instability with an along-crest wavelength of ∼10 m – a distance comparable to the cross-crest width of the wave-core – and with an inferred amplitude of several meters. The signature of this instability is consistent with the span-wise vortical circulations generated in three-dimensional direct numerical simulations of shoaling and breaking nonlinear internal waves. The coupling between the small-scale transverse wave-wake and turbulent wave-core may have an important impact on mass, momentum, and tracer redistribution in the coastal ocean.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
