skip to main content


Title: Observations of coherent transverse wakes in shoaling nonlinear internal waves
Abstract Space- and time-continuous seafloor temperature observations captured the three-dimensional structure of shoaling nonlinear internal waves (NLIWs) off of La Jolla, California. NLIWs were tracked for hundreds of meters in the cross- and along-shelf directions using a fiber optic Distributed Temperature Sensing (DTS) seafloor array, complemented by an ocean-wave-powered vertical profiling mooring. Trains of propagating cold-water pulses were observed on the DTS array inshore of the location of polarity transition predicted by weakly nonlinear internal wave theory. The subsequent evolution of the temperature signatures during shoaling was consistent with that of strongly nonlinear internal waves with a large Froude number, highlighting their potential to impact property exchange. Unexpectedly, individual NLIWs were trailed by a coherent, small-scale pattern of seabed temperature variability as they moved across the mid- and inner shelf. A kinematic model was used to demonstrate that the observed patterns were consistent with a transverse instability with an along-crest wavelength of ∼10 m – a distance comparable to the cross-crest width of the wave-core – and with an inferred amplitude of several meters. The signature of this instability is consistent with the span-wise vortical circulations generated in three-dimensional direct numerical simulations of shoaling and breaking nonlinear internal waves. The coupling between the small-scale transverse wave-wake and turbulent wave-core may have an important impact on mass, momentum, and tracer redistribution in the coastal ocean.  more » « less
Award ID(s):
1832109 1832170
NSF-PAR ID:
10398475
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow shelf slope region in the South China Sea. The spatially continuous view of temperature fields provides a perspective of physical processes commonly available only in laboratory settings or numerical models, including internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, and observations of internal rundown (near‐bed, offshore‐directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf—whether transmitted into shallow waters or reflected back offshore—is mediated by local water column density structure and background currents set by the previous shoaling internal waves, highlighting the importance of wave‐wave interactions in nearshore internal wave dynamics.

     
    more » « less
  2. Abstract

    Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth.

     
    more » « less
  3. Abstract

    The cross‐correlation of a diffuse or random wavefield at two points has been demonstrated to recover an empirical estimate of the Green's function under a wide variety of source conditions. Over the past two decades, the practical development of this principle, termed ambient noise interferometry, has revolutionized the fields of seismology and acoustics. Yet, because of the spatial sparsity of conventional water column and seafloor instrumentation, such array‐based processing approaches have not been widely utilized in oceanography. Ocean‐bottom distributed acoustic sensing (OBDAS) repurposes pre‐existing optical fibers laid in seafloor cables as dense arrays of broadband strain sensors, which observe both seismic waves and ocean waves. The thousands of sensors in an OBDAS array make ambient noise interferometry of ocean waves straightforward for the first time. Here, we demonstrate the application of ambient noise interferometry to surface gravity waves observed on an OBDAS array near the Strait of Gibraltar. We focus particularly on a 3‐km segment of the array on the continental shelf, containing 300 channels at 10‐m spacing. By cross‐correlating the raw strain records, we compute empirical ocean surface gravity wave Green's functions for each pair of stations. We first apply beamforming to measure the time‐averaged dispersion relation along the cable. Then, we exploit the non‐reciprocity of waves propagating in a flow to recover the depth‐averaged current velocity as a function of time using a waveform stretching method. The result is a spatially continuous matrix of current velocity measurements with resolution <100 m and <1 hr.

     
    more » « less
  4. Abstract

    Enhanced diapycnal mixing induced by the near-bottom breaking of internal waves is an essential component of the lower meridional overturning circulation. Despite its crucial role in the ocean circulation, tidally driven internal wave breaking is challenging to observe due to its inherently short spatial and temporal scales. We present detailed moored and shipboard observations that resolve the spatiotemporal variability of the tidal response over a small-scale bump embedded in the continental slope of Tasmania. Cross-shore tidal currents drive a nonlinear trapped response over the steep bottom around the bump. The observations are roughly consistent with two-dimensional high-mode tidal lee-wave theory. However, the alongshore tidal velocities are large, suggesting that the alongshore bathymetric variability modulates the tidal response driven by the cross-shore tidal flow. The semidiurnal tide and energy dissipation rate are correlated at subtidal time scales, but with complex temporal variability. Energy dissipation from a simple scattering model shows that the elevated near-bottom turbulence can be sustained by the impinging mode-1 internal tide, where the dissipation over the bump isO(1%) of the incident depth-integrated energy flux. Despite this small fraction, tidal dissipation is enhanced over the bump due to steep topography at a horizontal scale ofO(1) km and may locally drive significant diapycnal mixing.

    Significance Statement

    Near-bottom turbulent mixing is a key element of the global abyssal circulation. We present observations of the spatiotemporal variability of tidally driven turbulent processes over a small-scale topographic bump off Tasmania. The semidiurnal tide generates large-amplitude transient lee waves and hydraulic jumps that are unstable and dissipate the tidal energy. These processes are consistent with the scattering of the incident low-mode internal tide on the continental slope of Tasmania. Despite elevated turbulence over the bump, near-bottom energy dissipation is small relative to the incident wave energy flux.

     
    more » « less
  5. Abstract

    Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 4‐km cross‐reef section from the lagoon to 50‐m depth on the fore reef. Our observations show that during summer, internal waves shoaling on the shallow atoll regularly transport cold, nutrient‐rich water shoreward, altering near‐surface water properties on the fore reef. This water is transported shoreward of the reef crest by tides, breaking surface waves and wind‐driven flow, where it significantly alters the water temperature and nutrient concentrations on the reef flat. We find that without internal wave forcing on the fore reef, temperatures on the reef flat could be up to 2.0°C ± 0.2°C warmer. Additionally, we estimate a change in degree heating weeks of 0.7°C‐weeks warmer without internal waves, which significantly increases the probability of a more severe bleaching event occurring at Dongsha Atoll. Furthermore, using nutrient samples collected on the fore reef during the study, we estimated that instantaneous onshore nitrate flux is about four‐fold higher with internal waves than without internal waves. This work highlights the importance of internal waves as a physical mechanism shaping the nearshore environment, and likely supporting resilience of the reef.

     
    more » « less