Abstract. We investigated preservice teachers’ (PSTs) (N=13) experiences in a science teaching inquiry group professional learning experience on integrating computational thinking (CT) into elementary science. A subgroup of PSTs (n=6) participated alongside their mentor teachers. The others (n=7) participated independently. Our research question was: To what extent, if any, did participating in a professional learning experience on CT along with their mentor teachers appear to enhance PSTs’ learning and practice related to CT integration? We analyzed evaluation feedback, interviews, participant-developed lesson plans, surveys, and attendance data. Findings suggested that participants in both groups reacted positively to the learning experience’s content and approach, and expressed similar perceptions of their CT integration knowledge. PSTs participating with their mentor teachers felt slightly more successful in their CT integration efforts, and perceived CT integration as more feasible in their teaching contexts. However, differences between the groups were minimal. We also noted possible of influence of PSTs’ perceptions of the districts in which they were teaching. Our findings underscore the importance of PSTs’ perceptions of their teaching contexts when bringing a new innovation to the classroom - namely, perceptions of their mentors and curricula as supportive of the innovation. Through this ongoing work, we seek to identify empirically-supported strategies for preparing PSTs to integrate CT into their future classrooms.
more »
« less
Exploring Elementary Teachers' Eagerness and Reluctance to Integrating Computational Thinking
Although the professional learning opportunities for teachers to introduce computational thinking (CT) into K-12 education are increasing, it remains challenging to support teachers in integrating CT into their everyday classroom practices. In this study, we have identified six elementary teachers who showed evident eagerness or reluctance in a CT integration professional learning experience. We further analyzed the emerging verbal and non-verbal participation patterns of eagerness and reluctance and the challenges teachers have encountered in the professional learning experience. The results shed light on how to better understand and address the challenges in creating sustainable and effective professional learning.
more »
« less
- Award ID(s):
- 1934111
- PAR ID:
- 10384772
- Date Published:
- Journal Name:
- 2023 AERA Annual Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
China, C.' Tan; Chan, C.; Kali, Y. (Ed.)Teachers often find it challenging to learn computational thinking (CT) and integrate it with classroom learning. In this systematic review, we focus on how professional learning experiences have supported K-12 teachers to integrate CT into their classrooms. The findings suggest some effective strategies for building professional learning experiences but highlight the need for more agreement about the nature of CT.more » « less
-
Abstract. We investigated teacher learning within a professional development (PD) workshop series on computational thinking (CT) for elementary-level mentor teachers. The purpose of the PD was to prepare mentor teachers to support preservice teachers in integrating CT into their classroom practice, toward the broader goal of advancing CT for all in the early grades. We examined the ways in which participants collaboratively built on existing professional knowledge as they engaged in professional learning activities designed to introduce CT and related pedagogies for elementary science education. Our data sources were field notes, artifacts, drawings, written reflections, and focus group interviews. We describe how participants developed new understandings of CT integration and made connections to existing professional knowledge of their students, their curriculum, and their school contexts. We discuss implications for teacher learning and PD design relevant to CT, and make recommendations for future research.more » « less
-
Abstract Although computational thinking (CT) is becoming increasingly prevalent in K-12 education, many teachers find it challenging to integrate it with their classroom learning. In this systematic review, we have reviewed empirical evidence on teachers’ computational-thinking-focused professional development (PD). The findings depict the landscape of what has been done in terms of how PDs have been designed, how CT has been conceptualized, how learning outcomes have been assessed, and how teachers have been supported in integrating CT into their teaching practices. We have further summarized the lessons learned from the PDs and discussed the gaps as the field moves forward. These findings shed light on supporting teachers as the first step to creating an effective model for CT learning and development in K-12 education.more » « less
-
Abstract: We used design-based research to investigate an extended professional learning experience to prepare teachers to embed computational thinking in elementary science. Opportunities to interact synchronously in a community of practice - including through in person engagement in embodied challenges, discussion, and resource sharing, appeared to productively support teacher preparedness to embed CT in their science teaching. However, asynchronous collaboration via an online platform was less effective. We describe planned adjustments for future iterations of the program.more » « less
An official website of the United States government

