skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High concentrations of illicit stimulants and cutting agents cause false positives on fentanyl test strips
Abstract Background The opioid epidemic has caused an increase in overdose deaths which can be attributed to fentanyl combined with various illicit substances. Drug checking programs have been started by many harm reduction groups to provide tools for users to determine the composition of their street drugs. Immunoassay fentanyl test strips (FTS) allow users to test drugs for fentanyl by either filling a baggie or cooker with water to dissolve the sample and test. The antibody used in FTS is very selective for fentanyl at high dilutions, a characteristic of the traditional use of urine testing. These street sample preparation methods can lead to mg/mL concentrations of several potential interferents. We tested whether these concentrated samples could cause false positive results on a FTS. Methods 20 ng/mL Rapid Response FTS were obtained from BTNX Inc. and tested against 4 different pharmaceuticals (diphenhydramine, alprazolam, gabapentin, and naloxone buprenorphine) and 3 illicit stimulants [cocaine HCl, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA)] in concentrations from 20 to 0.2 mg/mL. The FTS testing pad is divided into 2 sections: the control area and the test area. Control and test area signal intensities were quantified by ImageJ from photographs of the test strips and compared to a threshold set by fentanyl at the FTS limit of detection. Results False positive results indicating the presence of fentanyl were obtained from samples of methamphetamine, MDMA, and diphenhydramine at concentrations at or above 1 mg/mL. Diphenhydramine is a common cutting agent in heroin. The street sample preparation protocols for FTS use suggested by many online resources would produce such concentrations of these materials. Street samples need to be diluted more significantly to avoid interference from potential cutting agents and stimulants. Conclusions Fentanyl test strips are commercially available, successful at detecting fentanyl to the specified limit of detection and can be a valuable tool for harm reduction efforts. Users should be aware that when drugs and adulterants are in high concentrations, FTS can give a false positive result.  more » « less
Award ID(s):
2016516
PAR ID:
10384974
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Harm Reduction Journal
Volume:
18
Issue:
1
ISSN:
1477-7517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundFentanyl test strips (FTS) are a commonly deployed tool in drug checking, used to test for the presence of fentanyl in street drug samples prior to consumption. Previous reports indicate that in addition to fentanyl, FTS can also detect fentanyl analogs like acetyl fentanyl and butyryl fentanyl, with conflicting reports on their ability to detect fentanyl analogs like Carfentanil and furanyl fentanyl. Yet with hundreds of known fentanyl analogs, there has been no large-scale study rationalizing FTS reactivity to different fentanyl analogs. MethodsIn this study, 251 synthetic opioids—including 214 fentanyl analogs—were screened on two brands of fentanyl test strips to (1) assess the differences in the ability of two brands of fentanyl test strips to detect fentanyl-related compounds and (2) determine which moieties in fentanyl analog chemical structures are most crucial for FTS detection. Two FTS brands were assessed in this study: BTNX Rapid Response and WHPM DanceSafe. ResultsOf 251 screened compounds assessed, 121 compounds were detectable at or below 20,000 ng/mL by both BTNX and DanceSafe FTS, 50 were not detectable by either brand, and 80 were detectable by one brand but not the other (n = 52 BTNX,n = 28 DanceSafe). A structural analysis of fentanyl analogs screened revealed that in general, bulky modifications to the phenethyl moiety inhibit detection by BTNX FTS while bulky modifications to the carbonyl moiety inhibit detection by DanceSafe FTS. ConclusionsThe different “blind spots” are caused by different haptens used to elicit the antibodies for these different strips. By utilizing both brands of FTS in routine drug checking, users could increase the chances of detecting fentanyl analogs in the “blind spot” of one brand. 
    more » « less
  2. Lactose is commonly used as a cutting agent in illicit drugs. Currently, presumptive field color test kits for illicit drugs do not test for the presence of lactose or other cutting agents. A method was developed to detect lactose on a paper-based test card. A three-enzyme system comprised of lactase, glucose oxidase, and peroxidase was used to break down lactose into peroxide, which was then detected with a redox indicator. The test can detect lactose concentrations as low as 5% in solid samples and shows no interference when lactose is mixed with illicit drugs or commercial pharmaceuticals. Prepared test cards were stable on the shelf for up to five months. In a blinded study of samples composed of mixtures of heroin, methamphetamine, cocaine HCl, crack cocaine, fillers, and lactose, the sensitivity for detection of lactose across three readers was 100% and specificity was 96.4% ( n = 96). When this test was incorporated into a 12-lane test card for the detection of illicit drugs, readers were correctly able to identify the illicit drug and the presence of lactose with 99.3% sensitivity and 100% specificity ( n = 54). This test is a robust and affordable way to detect lactose in illicit drug samples. 
    more » « less
  3. Abstract BackgroundFentanyl test strips (FTS) are lateral flow immunoassay strips designed for detection of ng/mL levels of fentanyl in urine. In 2021, the US Centers for Disease Control and the Substance Abuse and Mental Health Administration stated that federal funds could be used for procurement of FTS for harm reduction strategies approved by the government such as drug checking. The market for FTS has expanded rapidly in the US and Canada. However, there is no regulatory oversight by either government to ensure proper function of FTS that are being marketed for drug checking. Main bodyMany brands of FTS have rapidly entered the harm reduction market, creating concerns about the reproducibility and accuracy of their performance from brand to brand and lot to lot. Some examples are provided in this Comment. Similar problems with product quality were observed in the mid 2000’s when lateral flow immunoassays for malaria were funded in many countries and again in 2020, when COVID-19 tests were in huge demand. The combination of high demand and low levels of regulation and enforcement led some manufacturers to join the goldrush without adequate field testing or quality assurance. We argue that the harm reduction community urgently needs to set a lot checking program in place. A set of simple protocols for conducting the tests and communicating the results have been developed, and are described in the following Perspectives paper in this issue. ConclusionIn the absence of governmental regulation and enforcement, the harm reduction community should implement a FTS lot checking program. Based on previous experience with the malaria diagnostic lot checking program, this inexpensive effort could identify products that are not suitable for harm reduction applications and provide valuable feedback to manufacturers. Dissemination of the results will help harm reduction organizations to ensure that FTS they use for drug checking are fit for the purpose. 
    more » « less
  4. Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy was evaluated for the identification and quantification of compounds in an unknown street drug sample. Using 2D COSY and HSQC techniques, heroin was successfully quantified, and the presence of 6-monoacetylmorphine (6-MAM), xylazine, and caffeine was confirmed through partial structural elucidation. These methods demonstrated the ability to differentiate structurally similar opioid analogues without reliance on reference library databases. While gas chromatography–mass spectrometry (GC–MS) remains the standard in forensic laboratories, it has limitations in de novo structural analysis and in detecting emerging analogues absent from spectral libraries. In this study, heroin and fentanyl were quantified in both simulated and actual street samples at concentrations ranging from 0.97 to 1.80 mg/mL, with errors between 0% and 34% using a 400 MHz NMR instrument. A benchtop 60 MHz NMR system also detected and quantified 56 mg/mL of heroin with a 24% error in a simulated sample. These findings support the complementary role of 2D NMR spectroscopy in forensic drug analysis in light of the opioid epidemic and the evolving drug market. 
    more » « less
  5. Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples. 
    more » « less