The 5G user plane function (UPF) is a critical inter-connection point between the data network and cellular network infrastructure. It governs the packet processing performance of the 5G core network. UPFs also need to be flexible to support several key control plane operations. Existing UPFs typically run on general-purpose CPUs, but have limited performance because of the overheads of host-based forwarding. We design Synergy, a novel 5G UPF running on SmartNICs that provides high throughput and low latency. It also supports monitoring functionality to gather critical data on user sessions for the prediction and optimization of handovers during user mobility. The SmartNIC UPF efficiently buffers data packets during handover and paging events by using a two-level flow-state access mechanism. This enables maintaining flow-state for a very large number of flows, thus providing very low latency for control and data planes and high throughput packet forwarding. Mobility prediction can reduce the handover delay by pre-populating state in the UPF and other core NFs. Synergy performs handover predictions based on an existing recurrent neural network model. Synergy's mobility predictor helps us achieve 2.32× lower average handover latency. Buffering in the SmartNIC, rather than the host, during paging and handover events reduces packet loss rate by at least 2.04×. Compared to previous approaches to building programmable switch-based UPFs, Synergy speeds up control plane operations such as handovers because of the low P4-programming latency leveraging tight coupling between SmartNIC and host.
more »
« less
L 2 5GC: a low latency 5G core network based on high-performance NFV platforms
Cellular network control procedures (e.g., mobility, idle-active transition to conserve energy) directly influence data plane behavior, impacting user-experienced delay. Recognizing this control-data plane interdependence, L25GC re-architects the 5G Core (5GC) network, and its processing, to reduce latency of control plane operations and their impact on the data plane. Exploiting shared memory, L25GC eliminates message serialization and HTTP processing overheads, while being 3GPP-standards compliant. We improve data plane processing by factoring the functions to avoid control-data plane interference, and using scalable, flow-level packet classifiers for forwarding-rule lookups. Utilizing buffers at the 5GC, L25GC implements paging, and an intelligent handover scheme avoiding 3GPP's hairpin routing, and data loss caused by limited buffering at 5G base stations, reduces delay and unnecessary message processing. L25GC's integrated failure resiliency transparently recovers from failures of 5GC software network functions and hardware much faster than 3GPP's reattach recovery procedure. L25GC is built based on free5GC, an open-source kernel-based 5GC implementation. L25GC reduces event completion time by ~50% for several control plane events and improves data packet latency (due to improved control plane communication) by ~2×, during paging and handover events, compared to free5GC. L25GC's design is general, although current implementation supports a limited number of user sessions.
more »
« less
- Award ID(s):
- 1823270
- NSF-PAR ID:
- 10384984
- Date Published:
- Journal Name:
- SIGCOMM '22: Proceedings of the ACM SIGCOMM 2022 Conference
- Page Range / eLocation ID:
- 143 to 157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the commercialization and deployment of 5G, efforts are beginning to explore the design of the next generation of cellular networks, called 6G. New and constantly evolving use cases continue to place performance demands, especially for low latency communications, as these are still challenges for the 3GPP-specified 5G design, and will have to be met by the 6G design. Therefore, it is helpful to re-examine several aspects of the current cellular network’s design and implementation.Based on our understanding of the 5G cellular network specifications, we explore different implementation options for a dis-aggregated 5G core and their performance implications. To improve the data plane performance, we consider advanced packet classification mechanisms to support fast packet processing in the User Plane Function (UPF), to improve the poor performance and scalability of the current design based on linked lists. Importantly, we implement the UPF function on a SmartNIC for forwarding and tunneling. The SmartNIC provides the fastpath for device traffic, while more complex functions of buffering and processing flows that suffer a miss on the SmartNIC P4 tables are processed by the host-based UPF. Compared to an efficient DPDK-based host UPF, the SmartNIC UPF increases the throughput for 64 Byte packets by almost 2×. Furthermore, we lower the packet forwarding latency by 3.75× by using the SmartNIC. In addition, we propose a novel context-level QoS mechanism that dynamically updates the Packet Detection Rule priority and resource allocation of a flow based on the user context. By combining our innovations, we can achieve low latency and high throughput that will help us evolve to the next generation 6G cellular networks.more » « less
-
Software Defined Networking (SDN) and Network Function Virtualization (NFV) are transforming Data Center (DC), Telecom, and enterprise networking. The programmability offered by P4 enables SDN to be more protocol-independent and flexible. Data Centers are increasingly adopting SmartNICs (sNICs) to accelerate packet processing that can be leveraged to support packet processing pipelines and custom Network Functions (NFs). However, there are several challenges in integrating and deploying P4 based SDN control as well as host and sNIC-based programmable NFs. These include configuration and management of the data plane components (Host and sNIC P4 switches) for the SDN control plane and effective utilization of data plane resources. P4NFV addresses these concerns and provides a unified P4 switch abstraction framework to simplify the SDN control plane, reducing management complexities, and leveraging a host-local SDN Agent to improve the overall resource utilization. The SDN agent considers the network-wide, host, and sNIC specific capabilities and constraints. Based on workload and traffic characteristics, P4NFV determines the partitioning of the P4 tables and optimal placement of NFs (P4 actions) to minimize the overall delay and maximize resource utilization. P4NFV uses Mixed Integer Linear Programming (MILP) based optimization formulation and achieves up to 2. 5X increase in system capacity while minimizing the delay experienced by flows. P4NFV considers the number of packet exchanges, flow size, and state dependency to minimize the delay imposed by data transmission over PCI Express interface.more » « less
-
null (Ed.)Edge data centers are an appealing place for telecommunication providers to offer in-network processing such as VPN services, security monitoring, and 5G. Placing these network services closer to users can reduce latency and core network bandwidth, but the deployment of network functions at the edge poses several important challenges. Edge data centers have limited resource capacity, yet network functions are re-source intensive with strict performance requirements. Replicating services at the edge is needed to meet demand, but balancing the load across multiple servers can be challenging due to diverse service costs, server and flow heterogeneity, and dynamic workload conditions. In this paper, we design and implement a model-based load balancer EdgeBalance for edge network data planes. EdgeBalance predicts the CPU demand of incoming traffic and adaptively distributes flows to servers to keep them evenly balanced. We overcome several challenges specific to network processing at the edge to improve throughput and latency over static load balancing and monitoring-based approaches.more » « less
-
Augmented Reality (AR) has been widely hailed as a representative of ultra-high bandwidth and ultra-low latency apps that will be enabled by 5G networks. While single-user AR can perform AR tasks locally on the mobile device, multi-user AR apps, which allow multiple users to interact within the same physical space, critically rely on the cellular network to support user interactions. However, a recent study showed that multi-user AR apps can experience very high end-to-end latency when running over LTE, rendering user interaction practically infeasible. In this paper, we study whether 5G mmWave, which promises significant bandwidth and latency improvements over LTE, can support multi-user AR by conducting an in-depth measurement study of the same popular multi-user AR app over both LTE and 5G mmWave. Our measurement and analysis show that: (1) The E2E AR latency over LTE is significantly lower compared to the values reported in the previous study. However, it still remains too high for practical user interaction. (2) 5G mmWave brings no benefits to multi-user AR apps. (3) While 5G mmWave reduces the latency of the uplink visual data transmission, there are other components of the AR app that are independent of the network technology and account for a significant fraction of the E2E latency. (4) The app drains 66% more network energy, which translates to 28% higher total energy over 5G mmWave compared to over LTE.more » « less