skip to main content

This content will become publicly available on November 3, 2023

Title: The theory of transport in helical spin-structure crystals
Abstract We study helical structures in spin-spiral single crystals. In the continuum approach for the helicity potential energy the simple electronic band splits into two non-parabolic bands. For low exchange integrals, the lower band is described by a surface with a saddle shape in the direction of the helicity axis. Using the Boltzmann equation with the relaxation due to acoustic phonons, we discover the dependence of the current on the angle between the electric field and helicity axis leading to the both parallel and perpendicular to the electric field components in the electroconductivity. The latter can be interpreted as a planar Hall effect. In addition, we find that the transition rates depend on an electron spin allowing the transition between the bands. The electric conductivities exhibit nonlinear behaviors with respect to chemical potential µ . We explain this effect as the interference of the band anisotropy, spin conservation, and interband transitions. The proposed theory with the spherical model in the effective mass approximation for conduction electrons can elucidate nonlinear dependencies that can be identified in experiments. We find the excellent agreement between the theoretical and experimental data for parallel resistivity depending on temperature at the phase transition from helical to more » ferromagnetic state in a M n P single crystal. In addition, we predict that the perpendicular resistivity abruptly drops to zero in the ferromagnetic phase. « less
Authors:
;
Award ID(s):
1710512
Publication Date:
NSF-PAR ID:
10385011
Journal Name:
Journal of Physics: Condensed Matter
Volume:
35
Issue:
1
Page Range or eLocation-ID:
015701
ISSN:
0953-8984
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting (‘Rashba splitting’) occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.

  2. Abstract

    The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnBi2Te4is a rare platform for realizing a canted-antiferromagnetic (cAFM) Chern insulator with electrical control. We show that the Chern insulator state with Chern numberC = 1 appears as the AFM to canted-AFM phase transition happens. The Chern insulator state is further confirmed by observing the unusual transition of theC = 1 state in the cAFM phase to theC = 2 orbital quantum Hall states in the magnetic field induced ferromagnetic phase. Near the cAFM-AFM phase boundary, we show that the dissipationless chiral edge transport can be toggled on and off by applying an electric field alone. We attribute this switching effect to the electrical field tuning of the exchange gap alignment between the top and bottom surfaces. Our work paves the way for future studies on topological cAFM spintronics and facilitates the development of proof-of-concept Chern insulator devices.

  3. Abstract

    Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-splitH4andH5and the degenerateH6valence bands (VB) and the lowest degenerateH6conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of theH6CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along the c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These newmore »findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.

    « less
  4. The boundary modes of topological insulators are protected by the symmetries of the nontrivial bulk electronic states. Unless these symmetries are broken, they can give rise to novel phenomena, such as the quantum spin Hall effect in one-dimensional (1D) topological edge states, where quasiparticle backscattering is suppressed by time-reversal symmetry (TRS). Here, we investigate the properties of the 1D topological edge state of bismuth in the absence of TRS, where backscattering is predicted to occur. Using spectroscopic imaging and spin-polarized measurements with a scanning tunneling microscope, we compared quasiparticle interference (QPI) occurring in the edge state of a pristine bismuth bilayer with that occurring in the edge state of a bilayer, which is terminated by ferromagnetic iron clusters that break TRS. Our experiments on the decorated bilayer edge reveal an additional QPI branch, which can be associated with spin-flip scattering across the Brioullin zone center between time-reversal band partners. The observed QPI characteristics exactly match with theoretical expectations for a topological edge state, having one Kramer’s pair of bands. Together, our results provide further evidence for the nontrivial nature of bismuth and in particular, demonstrate backscattering inside a helical topological edge state induced by broken TRS through local magnetism.

  5. Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs atmore »approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 .« less