skip to main content


Title: Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload
Pulmonary arterial hypertension (PAH) is associated with substantial remodeling of the right ventricle (RV), which may at first be compensatory but at a later stage becomes detrimental to RV function and patient survival. Unlike the left ventricle (LV), the RV remains understudied, and with its thin-walled crescent shape, it is often modeled simply as an appendage of the LV. Furthermore, PAH diagnosis is challenging because it often leaves the LV and systemic circulation largely unaffected. Several treatment strategies such as atrial septostomy, right ventricular assist devices (RVADs) or RV resynchronization therapy have been shown to improve RV function and the quality of life in patients with PAH. However, evidence of their long-term efficacy is limited and lung transplantation is still the most effective and curative treatment option. As such, the clinical need for improved diagnosis and treatment of PAH drives a strong need for increased understanding of drivers and mechanisms of RV growth and remodeling (G&R), and more generally for targeted research into RV mechanics pathology. Computational models stand out as a valuable supplement to experimental research, offering detailed analysis of the drivers and consequences of G&R, as well as a virtual test bench for exploring and refining hypotheses of growth mechanisms. In this review we summarize the current efforts towards understanding RV G&R processes using computational approaches such as reduced-order models, three dimensional (3D) finite element (FE) models, and G&R models. In addition to an overview of the relevant literature of RV computational models, we discuss how the models have contributed to increased scientific understanding and to potential clinical treatment of PAH patients.  more » « less
Award ID(s):
2046259
NSF-PAR ID:
10385026
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Physiology
Volume:
13
ISSN:
1664-042X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Right ventricular (RV) failure remains a significant burden for patients with advanced heart failure, especially after major cardiac surgeries such as implantation of left ventricular assist devices. Device solutions that can assist the complex biological function of heart muscle without the disadvantages of bulky designs and infection‐prone drivelines remain an area of pressing clinical need, especially for the right ventricle. In addition, devices that incur contact between blood and artificial surfaces mandate long‐term use of blood‐thinning medications, carrying increased risks for the patients. This work describes the design of a biomimetic, elastic sleeve to support RV‐specific motion via tuned regional mechanical properties. The RV external device (RVEX) in computational models as well as benchtop models and ex vivo (i.e., explanted heart) setups are evaluated to characterize the device and predict functional benefit. Additionally, long‐term implantation potential is demonstrated in mice. Finally, the ability to sensorize the RVEX device to yield resistive self‐sensing capabilities to continuously monitor ventricular deformation, as demonstrated in benchtop experiments and in live animal surgeries, is proposed.

     
    more » « less
  2. Although pulmonary arterial hypertension (PAH) leads to right ventricle (RV) hypertrophy and structural remodeling, the relative contributions of changes in myocardial geometric and mechanical properties to systolic and diastolic chamber dysfunction and their time courses remain unknown. Using measurements of RV hemodynamic and morphological changes over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we discriminated the contributions of RV geometric remodeling and alterations of myocardial material properties to changes in systolic and diastolic chamber function. Significant and rapid RV hypertrophic wall thickening was sufficient to stabilize ejection fraction in response to increased pulmonary arterial pressure by week 4 without significant changes in systolic myofilament activation. After week 4, RV end-diastolic pressure increased significantly with no corresponding changes in end-diastolic volume. Significant RV diastolic chamber stiffening by week 5 was not explained by RV hypertrophy. Instead, model analysis showed that the increases in RV end-diastolic chamber stiffness were entirely attributable to increased resting myocardial material stiffness that was not associated with significant myocardial fibrosis or changes in myocardial collagen content or type. These findings suggest that whereas systolic volume in this model of RV pressure overload is stabilized by early RV hypertrophy, diastolic dilation is prevented by subsequent resting myocardial stiffening. NEW & NOTEWORTHY Using a novel combination of hemodynamic and morphological measurements over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we found that compensated systolic function was almost entirely explained by RV hypertrophy, but subsequently altered RV end-diastolic mechanics were primarily explained by passive myocardial stiffening that was not associated with significant collagen extracellular matrix accumulation. 
    more » « less
  3. Background

    Clinical management of boys with Duchenne muscular dystrophy (DMD) relies on in‐depth understanding of cardiac involvement, but right ventricular (RV) structural and functional remodeling remains understudied.

    Purpose

    To evaluate several analysis methods and identify the most reliable one to measure RV pre‐ and postcontrast T1 (RV‐T1) and to characterize myocardial remodeling in the RV of boys with DMD.

    Study Type

    Prospective.

    Population

    Boys with DMD (N = 27) and age‐/sex‐matched healthy controls (N = 17) from two sites.

    Field Strength/Sequence

    3.0 T using balanced steady state free precession, motion‐corrected phase sensitive inversion recovery and modified Look‐Locker inversion recovery sequences.

    Assessment

    Biventricular mass (Mi), end‐diastolic volume (EDVi) and ejection fraction (EF) assessment, tricuspid annular excursion (TAE), late gadolinium enhancement (LGE), pre‐ and postcontrast myocardial T1 maps. The RV‐T1 reliability was assessed by three observers in four different RV regions of interest (ROI) using intraclass correlation (ICC).

    Statistical Tests

    The Wilcoxon rank sum test was used to compare RV‐T1 differences between DMD boys with negative LGE(−) or positive LGE(+) and healthy controls. Additionally, correlation of precontrast RV‐T1 with functional measures was performed. AP‐value <0.05 was considered statistically significant.

    Results

    A 1‐pixel thick RV circumferential ROI proved most reliable (ICC > 0.91) for assessing RV‐T1. Precontrast RV‐T1 was significantly higher in boys with DMD compared to controls. Both LGE(−) and LGE(+) boys had significantly elevated precontrast RV‐T1 compared to controls (1543 [1489–1597] msec and 1550 [1402–1699] msec vs. 1436 [1399–1473] msec, respectively). Compared to healthy controls, boys with DMD had preserved RVEF (51.8 [9.9]% vs. 54.2 [7.2]%,P = 0.31) and significantly reduced RVMi (29.8 [9.7] g vs. 48.0 [15.7] g), RVEDVi (69.8 [29.7] mL/m2vs. 89.1 [21.9] mL/m2), and TAE (22.0 [3.2] cm vs. 26.0 [4.7] cm). Significant correlations were found between precontrast RV‐T1 and RVEF (β = −0.48%/msec) and between LV‐T1 and LVEF (β = −0.51%/msec).

    Data Conclusion

    Precontrast RV‐T1 is elevated in boys with DMD compared to healthy controls and is negatively correlated with RVEF.

    Level of Evidence

    1

    Technical Efficacy

    Stage 2

     
    more » « less
  4. null (Ed.)
    Use of electronic cigarettes is rapidly increasing among youth and young adults, but little is known regarding the long-term cardiopulmonary health impacts of these nicotine-containing devices. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension (PH) and right ventricular (RV) remodeling in mice. These changes were associated with upregulated RV angiotensin-converting enzyme (ACE). Angiotensin II receptor blockers (ARBs) have been shown to reverse cigarette smoking-induced PH in rats. ACE inhibitor and ARB use in a large retrospective cohort of patients with PH is associated with improved survival. Here, we utilized losartan (an ARB specific for angiotensin II type 1 receptor) to further explore nicotine-induced PH. Male C57BL/6 mice received nicotine vapor for 12 h/day, and exposure was assessed using serum cotinine to achieve levels comparable to human smokers or electronic cigarette users. Mice were exposed to nicotine for 8 wk and a subset was treated with losartan via an osmotic minipump. Cardiac function was assessed using echocardiography and catheterization. Although nicotine exposure increased angiotensin II in the RV and lung, this finding was nonsignificant. Chronic, inhaled nicotine significantly increased RV systolic pressure and RV free wall thickness versus air control. These parameters were significantly lower in mice receiving both nicotine and losartan. Nicotine significantly increased RV internal diameter, with no differences seen between the nicotine and nicotine-losartan group. Neither nicotine nor losartan affected left ventricular structure or function. These findings provide the first evidence that antagonism of the angiotensin II type 1 receptor can ameliorate chronic, inhaled nicotine-induced PH and RV remodeling. NEW & NOTEWORTHY Chronic, inhaled nicotine causes pulmonary hypertension and right ventricular remodeling in mice. Treatment with losartan, an angiotensin II type 1 receptor antagonist, ameliorates nicotine-induced pulmonary hypertension and right ventricular remodeling. This novel finding provides preclinical evidence for the use of renin-angiotensin system-based therapies in the treatment of pulmonary hypertension, particularly in patients with a history of tobacco-product use. 
    more » « less
  5. null (Ed.)
    Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases; however, the role of nicotine in the pathogenesis of these diseases is incompletely understood. The purpose of this study was to examine the effects of chronic nicotine inhalation on the development of cardiovascular and pulmonary disease with a focus on blood pressure and cardiac remodeling. Male C57BL6/J mice were exposed to air (control) or nicotine vapor (daily, 12 hour on/12 hour off) for 8 weeks. Systemic blood pressure was recorded weekly by radio-telemetry, and cardiac remodeling was monitored by echocardiography. At the end of the 8 weeks, mice were subjected to right heart catheterization to measure right ventricular systolic pressure. Nicotine-exposed mice exhibited elevated systemic blood pressure from weeks 1 to 3, which then returned to baseline from weeks 4 to 8, indicating development of tolerance to nicotine. At 8 weeks, significantly increased right ventricular systolic pressure was detected in nicotine-exposed mice compared with the air controls. Echocardiography showed that 8-week nicotine inhalation resulted in right ventricular (RV) hypertrophy with increased RV free wall thickness and a trend of increase in RV internal diameter. In contrast, there were no significant structural or functional changes in the left ventricle following nicotine exposure. Mechanistically, we observed increased expression of angiotensin-converting enzyme and enhanced activation of mitogen-activated protein kinase pathways in the RV but not in the left ventricle. We conclude that chronic nicotine inhalation alters both systemic and pulmonary blood pressure with the latter accompanied by RV remodeling, possibly leading to progressive and persistent pulmonary hypertension. 
    more » « less