This content will become publicly available on November 16, 2023
Subseasonal tropical cyclone (TC) reforecasts from the Community Earth System Model version 2 (CAM6) subseasonal prediction system are examined in this study. We evaluate the modeled TC climatology and the probabilistic forecast skill of basin‐wide TC genesis at weekly temporal resolution. Prediction skill is calculated using the Brier skill score relative to a constant annual mean climatology and to a monthly varying seasonal climatology during TC season. The model captures the observed basin‐wide climatological TC seasonality and spatial distributions at weeks 1–6, but TC genesis is largely underestimated from Week 2 onward. For some basins and lead times, the predicted TC genesis is primarily controlled by the number of TC “seeds” and the mean‐state climate condition. The model has good prediction skill relative to the constant climatology across all the basins and lead times, but is only skillful in the eastern Pacific, North Indian Ocean, and Southern Hemisphere at Week 1 when compared to the seasonal climatology, indicating limited skill in predicting deviations from the seasonal cycle. We find strong modulations of the predicted TC genesis at up to 3 weeks of forecast lead time by the Madden‐Julian Oscillation. The interannual variability of predicted TC genesis and accumulated cyclone energy are skillfully predicted in the North Atlantic and the Northwestern Pacific, with a strong modulation by the El Nino‐Southern Oscillation.
more » « less- Award ID(s):
- 1652289
- NSF-PAR ID:
- 10385043
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 127
- Issue:
- 22
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Seasonal predictions of tropical cyclone (TC) landfalls are challenging because seasonal landfall count not only depends on the number and spatial distribution of TC genesis, but also whether those TCs are steered toward land or not. Past studies have separately examined genesis and landfall as a function of large-scale ocean and atmospheric environmental conditions. Here, we introduce a practical statistical framework for estimating the seasonal count of TC landfalls as the product of a Poisson model for seasonal TC genesis and a logistic model for landfall probability. We compute spatial variations in TC landfall and genesis by decomposing TC activity in the western North Pacific (WNP) basin into 10° × 10° bins, then identify coherent regions where El Niño–Southern Oscillation (ENSO) and the western extent of the Pacific subtropical high (WPSH) have significant influences on seasonal landfall count. Our framework shows that ENSO and the WPSH are weakly related to basinwide landfalls but strongly related to regional genesis and landfall probability. ENSO modulates the zonal distribution of TC genesis, consistent with past work, whereas the WPSH modulates the meridional distribution of landfall probability due to variations in steering flow associated with the Pacific subtropical high. These spatial patterns result in four coherent subregions of the WNP basin that define seasonal landfall variations: landfall count increases in the southwestern WNP during a positive WPSH and La Niña, the south-central WNP during a positive WPSH and El Niño, the eastern WNP during a negative WPSH and El Niño, and the northern WNP during a negative WPSH and La Niña.more » « less
-
Abstract We describe a new effort to enhance climate forecast relevance and usability through the development of a system for evaluating and displaying real‐time subseasonal to seasonal (S2S) climate forecasts on a watershed scale. Water managers may not use climate forecasts to their full potential due to perceived low skill, mismatched spatial and temporal resolutions, or lack of knowledge or tools to ingest data. Most forecasts are disseminated as large‐domain maps or gridded datasets and may be systematically biased relative to watershed climatologies. Forecasts presented on a watershed scale allow water managers to view forecasts for their specific basins, thereby increasing the usability and relevance of climate forecasts. This paper describes the formulation of S2S climate forecast products based on the Climate Forecast System version 2 (CFSv2) and the North American Multi‐Model Ensemble (NMME). Forecast products include bi‐weekly CFSv2 forecasts, and monthly and seasonal NMME forecasts. Precipitation and temperature forecasts are aggregated spatially to a United States Geological Survey (USGS) hydrologic unit code 4 (HUC‐4) watershed scale. Forecast verification reveals appreciable skill in the first two bi‐weekly periods (Weeks 1–2 and 2–3) from CFSv2, and usable skill in NMME Month 1 forecast with varying skills at longer lead times dependent on the season. Application of a bias‐correction technique (quantile mapping) eliminates forecast bias in the CFSv2 reforecasts, without adding significantly to correlation skill.
-
Abstract In the Colorado River Basin (CRB), ensemble streamflow prediction (ESP) forecasts drive operational planning models that project future reservoir system conditions. CRB operational seasonal streamflow forecasts are produced using ESP, which represents climate using an ensemble of meteorological sequences of historical temperature and precipitation, but do not typically leverage additional real‐time subseasonal‐to‐seasonal climate forecasts. Any improvements to streamflow forecasts would help stakeholders who depend on operational projections for decision making. We explore incorporating climate forecasts into ESP through variations on an ESP trace weighting approach, focusing on Colorado River unregulated inflows forecasts to Lake Powell. The k‐nearest neighbors (kNN) technique is employed using North American Multi‐Model Ensemble one‐ and three‐month temperature and precipitation forecasts, and preceding three‐month historical streamflow, as weighting factors. The benefit of disaggregated climate forecast information is assessed through the comparison of two kNN weighting strategies; a basin‐wide kNN uses the same ESP weights over the entire basin, and a disaggregated‐basin kNN applies ESP weights separately to four subbasins. We find in general that climate‐informed forecasts add greater marginal skill in late winter and early spring, and that more spatially granular disaggregated‐basin use of climate forecasts slightly improves skill over the basin‐wide method at most lead times.
-
Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.more » « less
-
null (Ed.)Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks.more » « less