skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Constraints on Seismic Anisotropy in the Mantle Transition Zone From Long‐Period SS Precursors
Abstract

The mantle transition zone (MTZ) of Earth is demarcated by solid‐to‐solid phase changes of the mineral olivine that produce seismic discontinuities at 410 and 660‐km depths. Mineral physics experiments predict that wadsleyite can have strong single‐crystal anisotropy at the pressure and temperature conditions of the MTZ. Thus, significant seismic anisotropy is possible in the upper MTZ where lattice‐preferred orientation of wadsleyite is produced by mantle flow. Here, we use a body wave method, SS precursors, to study the topography change and seismic anisotropy near the MTZ discontinuities. We stack the data to explore the azimuthal dependence of travel‐times and amplitudes of SS precursors and constrain the azimuthal anisotropy in the MTZ. Beneath the central Pacific, we find evidence for ~4% anisotropy with a SE fast direction in the upper mantle and no significant anisotropy in the MTZ. In subduction zones, we observe ~4% anisotropy with a trench‐parallel fast direction in the upper mantle and ~3% anisotropy with a trench‐perpendicular fast direction in the MTZ. The transition of fast directions indicates that the lattice‐preferred orientation of wadsleyite induced by MTZ flow is organized separately from the flow in the upper mantle. Global azimuthal stacking reveals ~1% azimuthal anisotropy in the upper mantle but negligible anisotropy (<1%) in the MTZ. Finally, we correct for the upper mantle and MTZ anisotropy structures to obtain a new MTZ topography model. The anisotropy correction produces±3 km difference and therefore has minor overall effects on global MTZ topography.

 
more » « less
PAR ID:
10385115
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
124
Issue:
7
ISSN:
2169-9313
Page Range / eLocation ID:
p. 6779-6800
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve $\ge $3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materials induced by the shear deformation within the subducting slab beneath NE China. In the central Pacific study region, there is a non-detection of MTZ anisotropy, although modelling suggests the data coverage should allow us to resolve at least 3 per cent anisotropy. Therefore, the Hawaiian mantle plume has not produced detectable azimuthal anisotropy in the MTZ.

     
    more » « less
  2. Abstract

    In approximately one fourth of worldwide subduction zones, seismic observations indicate a rotation from trench‐normal to trench‐parallel fast axis orientations in the mantle wedge. To interpret this observation we predict the evolution of crystal lattice preferred orientation in mantle wedge material as a function of the amount of water by using a model of polycrystal deformation (D‐Rex) coupled with an analytical corner flow. The resulting seismic signature is obtained from synthetic seismic wave propagation through this mantle wedge. We identify that progressive hydration produces the rotation of fast axis orientations and can generate between the two zones of trench‐parallel and trench‐normal fast axis orientations a morph zone with very small anisotropy and a related decrease inPandSwave velocities. Such a morph zone is not produced by trench‐parallel flow, hence this signature can be used to detect water in the mantle wedge.

     
    more » « less
  3. Abstract

    Measurement of anisotropy advances our understanding of mantle dynamics by linking remote seismic observations to local deformation state through constraints from mineral physics. The Pacific Northwest records the largest depth‐integrated anisotropic signals across the western United States but the depths contributing to the total signal are unclear. We used the amplitudes of orthogonally polarized P‐to‐S converted phases from the mantle transition zone boundaries to identify anisotropy within the ∼400–700 km deep layer. Significant anisotropy is found near slab gaps imaged by prior tomography. Focusing of mantle flow through slab gaps may lead to locally elevated stress that enhances lattice preferred orientation of anisotropic minerals within the transition zone, such as wadsleyite.

     
    more » « less
  4. SUMMARY

    We present a new, 3-D model of seismic velocity and anisotropy in the Pacific upper mantle, PAC13E. We invert a data set of single-station surface-wave phase-anomaly measurements sensitive only to Pacific structure for the full set of 13 anisotropic parameters that describe surface-wave anisotropy. Realistic scaling relationships for surface-wave azimuthal anisotropy are calculated from petrological information about the oceanic upper mantle and are used to help constrain the model. The strong age dependence in the oceanic velocities associated with plate cooling is also used as a priori information to constrain the model. We find strong radial anisotropy with vSH > vSV in the upper mantle; the signal peaks at depths of 100–160 km. We observe an age dependence in the depth of peak anisotropy and the thickness of the anisotropic layer, which both increase with seafloor age, but see little age dependence in the depth to the top of the radially anisotropic layer. We also find strong azimuthal anisotropy, which typically peaks in the asthenosphere. The azimuthal anisotropy at asthenospheric depths aligns better with absolute-plate-motion directions while the anisotropy within the lithosphere aligns better with palaeospreading directions. The relative strengths of radial and azimuthal anisotropy are consistent with A-type olivine fabric. Our findings are generally consistent with an explanation in which corner flow at the ridge leads to the development and freezing-in of anisotropy in the lithosphere, and shear between the lithosphere and underlying asthenosphere leads to anisotropy beneath the plate. We also observe large regions within the Pacific basin where the orientation of anisotropy and the absolute-plate-motion direction differ; this disagreement suggests the presence of shear in the asthenosphere that is not aligned with absolute-plate-motion directions. Azimuthal-anisotropy orientation rotates with depth; the depth of the maximum vertical gradient in the fast-axis orientation tends to be age dependent and agrees well with a thermally controlled lithosphere–asthenosphere boundary. We observe that azimuthal-anisotropy strength at shallow depths depends on half-spreading rate, with higher spreading rates associated with stronger anisotropy. Our model implies that corner flow is more efficient at aligning olivine to form lattice-preferred orientation anisotropy fabrics in the asthenosphere when the spreading rate at the ridge is higher.

     
    more » « less
  5. Abstract

    Seismic anisotropy provides essential information for characterizing the orientation of deformation and flow in the crust and mantle. The isotropic structure of the Antarctic crust and upper mantle has been determined by previous studies, but the azimuthal anisotropy structure has only been constrained by mantle core phase (SKS) splitting observations. This study determines the azimuthal anisotropic structure of the crust and mantle beneath the central and West Antarctica based on 8—55 s Rayleigh wave phase velocities from ambient noise cross‐correlation. An anisotropic Rayleigh wave phase velocity map was created using a ray—based tomography method. These data are inverted using a Bayesian Monte Carlo method to obtain an azimuthal anisotropy model with uncertainties. The azimuthal anisotropy structure in most of the study region can be fit by a two‐layer structure, with one layer at depths of 0–15 km in the shallow crust and the other layer in the uppermost mantle. The azimuthal anisotropic layer in the shallow crust of West Antarctica, where it coincides with strong positive radial anisotropy quantified by the previous study, shows a fast direction that is subparallel to the inferred extension direction of the West Antarctic Rift System. Fast directions of upper mantle azimuthal anisotropy generally align with teleseismic shear wave splitting fast directions, suggesting a thin lithosphere or similar lithosphere‐asthenosphere deformation. However, inconsistencies in this exist in Marie Byrd Land, indicating differing ancient deformation patterns in the shallow mantle lithosphere sampled by the surface waves and deformation in the deeper mantle and asthenosphere sampled more strongly by splitting measurements.

     
    more » « less