skip to main content


Title: The importance of localized modes spectral contribution to thermal conductivity in amorphous polymers
Abstract

Polymers are a unique class of materials from the perspective of normal mode analysis. Polymers consist of individual chains with repeating units and strong intra-chain covalent bonds, and amorphous arrangements among chains with weak inter-chain van der Waals and for some polymers also electrostatic interactions. Intuitively, this strong heterogeneity in bond strength can give rise to special features in the constituent phonons, but such effects have not been studied deeply before. Here, we use lattice dynamics and molecular dynamics to perform modal analysis of the thermal conductivity in amorphous polymers. We find an abnormally large population of localized modes in amorphous polymers, which is fundamentally different from amorphous inorganic materials. Contrary to the common picture of thermal transport, localized modes in amorphous polymers are found to be the dominant contributors to thermal conductivity. We find that a significant portion of the localization happens within individual chains, but heat is dominantly conducted when localized modes involve two chains. These results suggest localized modes generally play a key role in thermal transport for different polymers. The results provide an alternative perspective on why polymer thermal conductivity is generally quite low and gives insight into how to potentially change it.

 
more » « less
NSF-PAR ID:
10385173
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Side chain alkyl groups have become the standard for incorporating solubilizing groups into conjugated polymers. However, the variety of alkyl groups available and their location on the polymer’s backbone can contribute to the packing of the polymer chains in many different ways, resulting in many different morphologies in the polymer that can affect its properties and performances. In this paper, we investigate the effects on the conductivity of nine phenothiazine-containing polyaniline derivatives (P1−P9) with alkyl or aryl side chains on the phenothiazine core while also varying the number of methyl groups on the p-phenylenediamine unit. 1H nuclear magnetic resonance spectroscopy, ultraviolet−visible spectroscopy, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and wide-angle X-ray scattering (WAXS) were all used to study the polymers’ structures, physical and thermal properties, and morphologies. The t-butylphenyl substituent on the phenothiazine core seems to provide more rigidity in the polymer’s backbone resulting in higher Tg for series 3, while series 2 containing the 2-hexyldecyl-substituted polymers had the lowest Tg, which is attributed to the large volume of the side chain, that limits interchain interactions. Consequently, series 2 had the lowest conductivity. However, the strongest effect on the conductivity was seen from the tetramethyl groups on the PPDA unit, which resulted in the lowest conductivity in each series due to torsional strain (twisting) in the polymer’s backbone. The WAXS data suggest mostly amorphous films; thus, the conductivity in these materials seems to be dominated by a multiscale charge transport phenomenon that occurs in amorphous conjugated materials. Our results will aid in the understanding of side chain engineering of PANI derivatives for their optimum performances. 
    more » « less
  2. For heat conduction along polymer chains, a decrease in the axial thermal conductivity often occurs when the polymer structure changes from one-dimensional (1D) to three-dimensional (3D). For example, a single extended aliphatic chain (e.g., polyethylene or poly(dimethylsiloxane)) usually has a higher axial thermal conductivity than its double-chain or crystal counterparts because coupling between chains induces strong interchain anharmonic scatterings. Intuitively, for chains with an aromatic backbone, the even stronger π–π stacking, once formed between chains, should enhance thermal transport across chains and suppress the thermal conductivity along the chains. However, we show that this trend is the opposite in poly(p-phenylene) (PPP), a typical chain with an aromatic backbone. Using molecular dynamics simulations, we found that the axial thermal conductivity of PPP chains shows an anomalous dimensionality dependence where the thermal conductivity of double-chain and 3D crystal structures is higher than that of a 1D single chain. We analyzed the probability distribution of dihedral angles and found that π–π stacking between phenyl rings restricts the free rotation of phenyl rings and forms a long-range order along the chain, thus enhancing thermal transport along the chain direction. Though possessing a stronger bonding strength and stabilizing the multiple-chain structure, π–π stacking does not lead to a higher interchain thermal conductance between phenyl rings compared with that between aliphatic chains. Our simulation results on the effects of π–π stacking provide insights to engineer thermal transport in polymers at the molecular level. 
    more » « less
  3. Abstract

    Polymers play an integral role in various applications, from everyday use to advanced technologies. In the era of machine learning (ML), polymer informatics has become a vital field for efficiently designing and developing polymeric materials. However, the focus of polymer informatics has predominantly centered on single-component polymers, leaving the vast chemical space of polymer blends relatively unexplored. This study employs a high-throughput molecular dynamics (MD) simulation combined with active learning (AL) to uncover polymer blends with enhanced thermal conductivity (TC) compared to the constituent single-component polymers. Initially, the TC of about 600 amorphous single-component polymers and 200 amorphous polymer blends with varying blending ratios are determined through MD simulations. The optimal representation method for polymer blends is identified, which involves a weighted sum approach that extends existing polymer representation from single-component polymers to polymer blends. An AL framework, combining MD simulation and ML, is employed to explore the TC of approximately 550,000 unlabeled polymer blends. The AL framework proves highly effective in accelerating the discovery of high-performance polymer blends for thermal transport. Additionally, we delve into the relationship between TC, radius of gyration (Rg), and hydrogen bonding, highlighting the roles of inter- and intra-chain interactions in thermal transport in amorphous polymer blends. A significant positive association between TC andRgimprovement and an indirect contribution from H-bond interaction to TC enhancement are revealed through a log-linear model and an odds ratio calculation, emphasizing the impact of increasingRgand H-bond interactions on enhancing polymer blend TC.

     
    more » « less
  4. null (Ed.)
    Organic–inorganic hybrids have found increasing applications for thermal management across various disciplines. Such materials can achieve thermal conductivities below the so-called “amorphous limit” of their constituents’ thermal conductivity. Despite their technological significance, a complete understanding of the origins of this thermal conductivity reduction remains elusive in these materials. In this paper, we develop a prototypical cross-linked organic–inorganic layered system, to investigate the spectral origins of its sub-amorphous thermal conductivity. Initially, we study the atomic structure of the model and find that besides polymer chain length, the relative drift of the layers governs the reduction in computed basal spacing, in agreement with experimental measurements. We, subsequently, find that organic cross-linking results in up to 40% reduction in thermal conductivity compared to inorganic samples. An in-depth investigation of vibrational modes reveals that this reduction is the result of reduced mode diffusivities, which in turn is a consequence of a vibrational mismatch between the organic and inorganic constituents. We also show that the contribution of propagating modes to the total thermal conductivity is not affected by organic cross-linking. Our approach paves the path toward a physics-informed analysis and design of a wide range of multifunctional hybrid nanomaterials for thermal management applications among others. 
    more » « less
  5. We study the conductive heat transport through calcium silicate hydrate (C-S-H) and organically cross-linked C-S-H via experiments, micromechanical homogenization theory, and molecular simulations. We find that C-S-H's intrinsic thermal conductivity falls below its amorphous limit when cross-linked with short-chain organosilanes. The observed reduction correlates with the alkyl chain length of the bis-organosilane molecule. To understand the underlying fundamental molecular processes accountable for such a reduction, we construct realistic molecular structures of cross-linked C-S-H and validate them against the spectroscopic and pycnometery measurements. The atomistic simulations indicate that the reduction in the contribution of propagons (propagating heat carriers) and diffusons (diffusive heat carriers) to heat transport, and the amplification of locons (localized vibrational modes), are the main driving factors allowing to limit the heat conduction in C-S-H. Presented findings offer new potential directions to nanoengineering novel admixtures for cement composites and resilient lightweight cementitious mesostructures for thermally efficient building envelopes. 
    more » « less