Abstract Early data from the James Webb Space Telescope (JWST) have revealed a bevy of high-redshift galaxy candidates with unexpectedly high stellar masses. An immediate concern is the consistency of these candidates with galaxy formation in the standardΛCDM cosmological model, wherein the stellar mass (M⋆) of a galaxy is limited by the available baryonic reservoir of its host dark matter halo. The mass function of dark matter haloes therefore imposes an absolute upper limit on the number densityn(>M⋆, z) and stellar mass densityρ⋆(>M⋆, z) of galaxies more massive thanM⋆at any epochz. Here I show that the most massive galaxy candidates in JWST observations atz ≈ 7–10 lie at the very edge of these limits, indicating an important unresolved issue with the properties of galaxies derived from the observations, how galaxies form at early times inΛCDM or within this standard cosmology itself.
more »
« less
If Dark Matter is Fuzzy, the First Stars Form in Massive Pancakes
Abstract Fuzzy dark matter (FDM) is a proposed modification for the standard cold dark matter (CDM) model motivated by small-scale discrepancies in low-mass galaxies. Composed of ultralight (mass ∼ 1022eV) axions with kiloparsec-scale de Broglie wavelengths, this is one of a class of candidates that predicts that the first collapsed objects form in relatively massive dark matter halos. This implies that the formation history of the first stars and galaxies would be very different, potentially placing strong constraints on such models. Here we numerically simulate the formation of the first stars in an FDM cosmology, following the collapse in a representative volume all the way down to primordial protostar formation including a primordial nonequilibrium chemical network and cooling for the first time. We find two novel results: first, the large-scale collapse results in a very thin and flat gas “pancake”; second, despite the very different cosmology, this pancake fragments until it forms protostellar objects indistinguishable from those in CDM. Combined, these results indicate that the first generation of stars in this model are also likely to be massive and, because of the sheet morphology, do not self-regulate, resulting in a massive Population III starburst. We estimate the total number of first stars forming in this extended structure to be 104over 20 Myr using a simple model to account for the ionizing feedback from the stars, and should be observable with the James Webb Space Telescope. These predictions provide a potential smoking gun signature of FDM and similar dark matter candidates.
more »
« less
- PAR ID:
- 10385200
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 941
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L18
- Size(s):
- Article No. L18
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Bose–Einstein condensate dark matter (BECDM, also known as fuzzy dark matter) is motivated by fundamental physics and has recently received significant attention as a serious alternative to the established cold dark matter (CDM) model. We perform cosmological simulations of BECDM gravitationally coupled to baryons and investigate structure formation at high redshifts (z ≳ 5) for a boson mass m = 2.5 × 10−22 eV, exploring the dynamical effects of its wavelike nature on the cosmic web and the formation of first galaxies. Our BECDM simulations are directly compared to CDM as well as to simulations where the dynamical quantum potential is ignored and only the initial suppression of the power spectrum is considered – a warm dark matter-like (‘WDM’) model often used as a proxy for BECDM. Our simulations confirm that ‘WDM’ is a good approximation to BECDM on large cosmological scales even in the presence of the baryonic feedback. Similarities also exist on small scales, with primordial star formation happening both in isolated haloes and continuously along cosmic filaments; the latter effect is not present in CDM. Global star formation and metal enrichment in these first galaxies are delayed in BECDM/‘WDM’ compared to the CDM case: in BECDM/‘WDM’ first stars form at z ∼ 13/13.5, while in CDM star formation starts at z ∼ 35. The signature of BECDM interference, not present in ‘WDM’, is seen in the evolved dark matter power spectrum: although the small-scale structure is initially suppressed, power on kpc scales is added at lower redshifts. Our simulations lay the groundwork for realistic simulations of galaxy formation in BECDM.more » « less
-
ABSTRACT Fuzzy dark matter (FDM), comprised of ultralight ($$m \sim 10^{-22}\,{\rm eV}$$) boson particles, has received significant attention as a viable alternative to cold dark matter (CDM), as it approximates CDM on large scales ($${\gtrsim}1$$ Mpc) while potentially resolving some of its small-scale problems via kiloparsec-scale quantum interference. However, the most basic FDM model, with one free parameter (the boson mass), is subject to a tension: small boson masses yield the desired cores of dwarf galaxies but underpredict structure in the Lyman-α forest, while large boson masses render FDM effectively identical to CDM. This Catch-22 problem may be alleviated by considering an axion-like particle with attractive particle self-interactions. We simulate an idealized FDM halo with self-interactions parametrized by an energy decay constant $$f \sim 10^{15}~\rm {GeV}$$ related to the axion symmetry-breaking conjectured to solve the strong-CP problem in particle physics. We observe solitons, a hallmark of FDM, condensing within a broader halo envelope, and find that the density profile and soliton mass depend on self-interaction strength. We propose generalized formulae to extend those from previous works to include self-interactions. We also investigate a critical mass threshold predicted for strong interactions at which the soliton collapses into a compact, unresolved state. We find that the collapse happens quickly, and its effects are initially contained to the central region of the halo.more » « less
-
null (Ed.)ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $$\sim 10^{12}\, \text{M}_\odot$$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 $${\rm cm^2 \, g^{-1}}$$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities than the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts.more » « less
-
Abstract In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scale structure. Much of the attention has been given to detecting individual dark matter subhaloes through lens modelling, but recent work has suggested that the full population of subhaloes could be probed using a power spectrum analysis. In this paper, we quantify the power spectrum of small-scale structure in simulated galaxies, with the goal of understanding theoretical predictions and setting the stage for using measurements of the power spectrum to test dark matter models. We use a sample of simulated galaxies generated from the galacticus semi-analytic model to determine the power spectrum distribution first in the CDM paradigm and then in a warm dark matter scenario. We find that a measurement of the slope and amplitude of the power spectrum on galaxy strong lensing scales (k ∼ 1 kpc−1) could be used to distinguish between CDM and alternate dark matter models, especially if the most massive subhaloes can be directly detected via gravitational imaging.more » « less
An official website of the United States government
