skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unlocking the Single-Crystal Record of Heavy Stable Isotopes
Stable isotopes provide deep insights into processes across a wide range of scales, from micron- to cosmic-size systems. Here, we review how continued advances in mass-spectrometry have enabled the analysis of ever-smaller samples and brought the field of heavy stable isotope geochemistry to its next frontier: the single-crystal scale. Accessing this record can be as enlightening as it is challenging. Drawing on novel systematics at different stages of development (from well-established to nascent), we discuss how the isotopes of heavy elements, such as magnesium, iron, zirconium, or uranium, can be used at the single-crystal and subcrystal scales to reconstruct magma thermal histories, crystal growth timescales, or, possibly, magma redox conditions.  more » « less
Award ID(s):
2131632 2131643 1824002
PAR ID:
10385340
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Elements
Volume:
17
Issue:
6
ISSN:
1811-5209
Page Range / eLocation ID:
389 to 394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The evolution of the magma ocean that occupied the early Earth is influenced by the buoyancy of crystals in silicate liquid. At lower mantle pressures, silicate crystals are denser than the iso‐chemical liquid, but heavy elements like iron can cause crystals to float if they partition into the liquid phase. Crystal flotation allows for a basal magma ocean, which might explain geochemical anomalies in mantle‐derived magmas, seismic anomalies in the lower mantle, and the source of the Earth's early magnetic field. To examine whether a basal magma ocean is gravitationally stable, we investigate the degree of iron partitioning between (Mg,Fe)SiO3liquid and bridgmanite. By utilizing ab initio molecular dynamics simulations coupled with thermodynamic integration, we find that iron partitions into the liquid, and increasingly so with increasing pressure. Bridgmanite crystals are found to be buoyant at lower mantle conditions, stabilizing the basal magma ocean. 
    more » « less
  2. null (Ed.)
    Diffusional isotope fractionation occurs in geochemical processes (such as magma mixing, bubble growth, and crystal growth), even at magmatic temperatures. Isotopic mass dependence of diffusion is commonly expressed as Di Dj ¼ mj mi   b , where Di and Dj are diffusion coefficients of two isotopes whose masses are mi and mj. How the dimensionless empirical parameter b depends on temperature, pressure, and composition remains poorly constrained. Here, we conducted a series of first-principles molecular dynamics simulations to evaluate the b factor of Mg isotopes in MgSiO3 and Mg2SiO4 melts using pseudo-isotope method. In particular, we considered interactions between Mg isotopes by simultaneously putting pseudo-mass and normalmass Mg atoms in a simulation supercell. The calculated b for Mg isotopes decreases linearly with decreasing temperature at zero pressure, from 0:158  0:004 at 4000 K to 0:121  0:017 at 2200 K for MgSiO3 melt and from 0:150  0:004 at 4000 K to 0:101  0:012 at 2200 K for Mg2SiO4 melt. Moreover, our simulations of compressed Mg2SiO4 melt along the 3000 K isotherm show that the b value decreases linearly from 0:130  0:006 at 0 GPa to 0:060  0:011 at 17 GPa. Based on our diffusivity results, the empirically established positive correlation between b and solvent-normalized diffusivity (Di/DSi) seems to be applicable only at constant temperatures or in narrow temperature ranges. Analysis of atomistic mechanisms suggests that the calculated b values are inversely correlated with force constants of Mg at a given temperature or pressure. Good agreement between our first principles results with available experimental data suggests that interactions between isotopes of major elements must be considered in calculating b for major elements in silicate melts. Also, we discuss diffusion-controlled crystal growth by considering our calculated b values. 
    more » « less
  3. This chapter discusses how radiogenic and stable isotopes can be used in the study of metallic mineral deposits. Although the chapter is mostly focused on the radiogenic (Pb, Os) and heavy stable (Fe, Cu, Zn) isotopes of metallic elements, we complement the discussion highlighting also the power of stable isotopes of light elements, which are major to significant components of hydrothermal fluids and rocks (e.g., H, B, C, N, O, S), as well as of radiogenic isotopes of elements (Sr, Nd, Hf ) that are useful in tracing fluid/magma sources and their interaction with the host rocks. In the first part of this chapter we discuss general aspects of isotopes clarifying the differences between stable non-radiogenic and stable radiogenic isotopes and, consequently, their different applicability to metallogenic studies. Due to their properties, stable non-radiogenic isotopes record mass-dependent fractionation that occur in many reactions associated with the formation of mineral deposits. Mass-dependent fractionation of stable non-radiogenic isotopes occurs both under equilibrium and non-equilibrium (kinetic) conditions of the reactions leading to ore mineral deposition and is controlled by various physico-chemical parameters, like, among the principal ones, temperature, oxygen fugacity, and biological activity. Therefore, stable non-radiogenic isotopes can inform us about the physico-chemical and, eventually, biological processes that control ore mineral deposition and also on the sources of some metals (e.g., transition metal isotopes of elements like Fe, Cu, Zn) or of the fluids (e.g., H, C, O, N, S isotopes) and even of metal ligands (e.g., S, Cl). We conclude the first part of the chapter providing some hints on the strategy of sampling and on the instrumentation related to isotopic studies. In the second part we discuss radioactive-radiogenic isotope systems and their applications in metallogenic studies of metallic mineral deposits. Stable radiogenic isotopes are characterized by relative variations that are controlled, in each geological system, by the addition of a radiogenic component of an isotope, derived from the decay of a radioactive parent, to the same radiogenic isotope already present in the Earth since its formation  4.55 Gyr ago. This relative variation is usually expressed as the ratio of a radiogenic isotope of an element to a non-radiogenic isotope of the same element. The ratio of these two isotopes has increased since the Earth formation and the magnitude of its variations depends on the radioactive/ radiogenic isotope ratios in different geological systems and on the time elapsed since the system has formed. The Earth is  4.55 Gyr old and has evolved from an initially homogeneous isotopic composition to reservoirs (e.g., mantle, crust) and crustal rocks with very variable radioactive/radiogenic isotope ratios due to magmatic, metamorphic, weathering, atmospheric and biologic processes, among others. This has resulted in extremely large variations of radiogenic isotopes in rocks and reservoirs of the Earth which can track various geological processes. In ore geology, stable radiogenic isotopes are best suited for tracing metal (e.g., Pb, Os) sources from different rocks and reservoirs (e.g., mantle, upper crust, lower crust), fluid-rock interactions (i.e., the hydrothermal plumbing system), or magma-host rock interactions (e.g., host rock assimilation by magmas associated with magmatic-hydrothermal deposits). Radioactive-radiogenic isotope systems allow us to determine also absolute ages of suitable minerals that are found in mineral deposits. This is an essential information in metallogeny that allows us to link the formation of a mineral deposit to a specific geological process and/or to specific periods of the Earth’s history. We discuss various dating methods that are extensively applied to date mineral deposits. These methods can be subdivided into those that allow a direct dating of ore minerals (e.g., RedOs dating of molybdenite, UdPb dating of cassiterite) and those that allow dating of minerals that are demonstrably related with the mineralization (e.g., UdPb dating of zircon from magmatic rocks associated with magmatic-hydrothermal deposits; Ar/Ar dating of K-bearing minerals resulting from alteration associated with various types of mineral deposits). We discuss pros and cons of using these various methods and also mention methods that are less used (because potentially less accurate and precise), but sometimes represent the only possibility to provide an age to deposit types that are notoriously difficult to date (e.g., MVT and Carlin-type deposits). We highlight the power of both stable radiogenic and non-radiogenic isotopes in unravelling the genesis of metallic mineral deposits through a series of conceptual and real examples applied to a broad range of mineral deposit types such as porphyry systems (i.e., porphyry deposits, high- and intermediate-sulfidation epithermal deposits, skarn, carbonate replacement deposits, sediment-hosted Au deposits), low-sulfidation epithermal deposits, IOCG deposits, ortho-magmatic deposits, volcanic-hosted massive sulfide deposits (VHMS), sediment-hosted deposits (stratiform copper, MVT), and supergene deposits. In the third part of the chapter, we discuss the use of transition metal stable non-radiogenic isotopes to mineral deposits. Although in its infancy, the application of transition metal isotopes to mineral deposit investigation is quickly growing because these isotopes allow us to address different aspects of the formation of mineral deposits compared to radiogenic isotopes. In particular, isotopes of transition metals (like stable isotopes of light elements) undergo mass-dependent fractionation processes that may be associated with different types of equilibrium and non-equilibrium chemical, physical and biological reactions occurring during the formation of mineral deposits. We focus on the applications of the isotopes of Cu, Fe and Zn to various deposit types, because isotopes of these transition metals are those that have been most extensively used in mineral deposit studies. Mass-independent fractionation may also occur for isotopes of some elements and could be a developing field that has not yet been extensively explored in the study of mineral deposits. 
    more » « less
  4. Zirconium is a commonly used elemental tracer of silicate differentiation, yet its stable isotope systematics remain poorly known. Accessory phases rich in Zr 4+ such as zircon and baddeleyite may preserve a unique record of Zr isotope behavior in magmatic environments, acting both as potential drivers of isotopic fractionation and recorders of melt compositional evolution. To test this potential, we measured the stable Zr isotope composition of 70 single zircon and baddeleyite crystals from a well-characterized gabbroic igneous cumulate. We show that (i) closed-system magmatic crystallization can fractionate Zr stable isotopes at the >0.5% level, and (ii) zircon and baddeleyite are isotopically heavy relative to the melt from which they crystallize, thus driving chemically differentiated liquids toward isotopically light compositions. Because these effects are contrary to first-order expectations based on mineral-melt bonding environment differences, Zr stable isotope fractionation during zircon crystallization may not solely be a result of closed-system thermodynamic equilibrium. 
    more » « less
  5. Abstract BackgroundStable isotope probing (SIP) approaches are a critical tool in microbiome research to determine associations between species and substrates, as well as the activity of species. The application of these approaches ranges from studying microbial communities important for global biogeochemical cycling to host-microbiota interactions in the intestinal tract. Current SIP approaches, such as DNA-SIP or nanoSIMS allow to analyze incorporation of stable isotopes with high coverage of taxa in a community and at the single cell level, respectively, however they are limited in terms of sensitivity, resolution or throughput. ResultsHere, we present an ultra-sensitive, high-throughput protein-based stable isotope probing approach (Protein-SIP), which cuts cost for labeled substrates by 50–99% as compared to other SIP and Protein-SIP approaches and thus enables isotope labeling experiments on much larger scales and with higher replication. The approach allows for the determination of isotope incorporation into microbiome members with species level resolution using standard metaproteomics liquid chromatography-tandem mass spectrometry (LC–MS/MS) measurements. At the core of the approach are new algorithms to analyze the data, which have been implemented in an open-source software (https://sourceforge.net/projects/calis-p/). We demonstrate sensitivity, precision and accuracy using bacterial cultures and mock communities with different labeling schemes. Furthermore, we benchmark our approach against two existing Protein-SIP approaches and show that in the low labeling range used our approach is the most sensitive and accurate. Finally, we measure translational activity using18O heavy water labeling in a 63-species community derived from human fecal samples grown on media simulating two different diets. Activity could be quantified on average for 27 species per sample, with 9 species showing significantly higher activity on a high protein diet, as compared to a high fiber diet. Surprisingly, among the species with increased activity on high protein were severalBacteroidesspecies known as fiber consumers. Apparently, protein supply is a critical consideration when assessing growth of intestinal microbes on fiber, including fiber-based prebiotics. ConclusionsWe demonstrate that our Protein-SIP approach allows for the ultra-sensitive (0.01 to 10% label) detection of stable isotopes of elements found in proteins, using standard metaproteomics data. 
    more » « less