skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental testing of a control barrier function on an automated vehicle in live multi-lane traffic
This paper experimentally tests an implementation of a control barrier function (CBF) designed to guarantee a minimum time-gap in car following on an automated vehicle (AV) in live traffic, with a majority occurring on freeways. The CBF supervises a nominal unsafe PID controller on the AV’s velocity. The experimental testing spans two months of driving, of which 1.9 hours of data is collected in which the CBF and nominal controller are active. We find that violations of the guaranteed minimum time-gap are observed, as measured by the vehicle’s on-board radar unit. There are two distinct causes of the violations. First, in multi-lane traffic, Cut-ins from other vehicles represent external disturbances that can immediately violate the minimum guaranteed time gap provided by the CBF. When cut-ins occur, the CBF does eventually return the vehicle to a safe time gap. Second, even when cut-ins do not occur, system model inaccuracies (e.g., sensor error and delay, actuator error and delay) can lead to violations of the minimum time-gap. These violations are small relative to the violations that would have occurred using only the unsafe nominal control law.  more » « less
Award ID(s):
2135579
PAR ID:
10385362
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 2nd Workshop on Data-Driven and Intelligent Cyber-Physical Systems for Smart Cities Workshop (DI-CPS)
Page Range / eLocation ID:
31 to 35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the issue of model uncertainty in safety-critical control is addressed with a data-driven approach. For this purpose, we utilize the structure of an input-output linearization controller based on a nominal model along with a Control Barrier Function and Control Lyapunov Function based Quadratic Program (CBF-CLF-QP). Specifically, we propose a novel reinforcement learning framework which learns the model uncertainty present in the CBF and CLF constraints, as well as other control-affine dynamic constraints in the quadratic program. The trained policy is combined with the nominal model based CBF-CLF-QP, resulting in the Reinforcement Learning based CBF-CLF-QP (RL-CBF-CLF-QP), which addresses the problem of model uncertainty in the safety constraints. The performance of the proposed method is validated by testing it on an underactuated nonlinear bipedal robot walking on randomly spaced stepping stones with one step preview, obtaining stable and safe walking under model uncertainty. 
    more » « less
  2. null (Ed.)
    Key to the effectiveness of schedule-driven approaches to real-time traffic control is an ability to accurately predict when sensed vehicles will arrive at and pass through the intersection. Prior work in schedule-driven traffic control has assumed a static vehicle arrival model. However, this static predictive model ignores the fact that the queue count and the incurred delay should vary as different partial signal timing schedules (i.e., different possible futures) are explored during the online planning process. In this paper, we propose an alternative arrival time model that incorporates queueing dynamics into this forward search process for a signal timing schedule, to more accurately capture how the intersection’s queues vary over time. As each search state is generated, an incremental queueing delay is dynamically projected for each vehicle. The resulting total queueing delay is then considered in addition to the cumulative delay caused by signal operations. We demonstrate the potential of this approach through microscopic traffic simulation of a real-world road network, showing a 10 − 15% reduction in average wait times over the schedule-driven traffic signal control system in heavy traffic scenarios. 
    more » « less
  3. This paper studies the learning-based optimal control for a class of infinite-dimensional linear time-delay systems. The aim is to fill the gap of adaptive dynamic programming (ADP) where adaptive optimal control of infinite-dimensional systems is not addressed. A key strategy is to combine the classical model-based linear quadratic (LQ) optimal control of time-delay systems with the state-of-art reinforcement learning (RL) technique. Both the model-based and data-driven policy iteration (PI) approaches are proposed to solve the corresponding algebraic Riccati equation (ARE) with guaranteed convergence. The proposed PI algorithm can be considered as a generalization of ADP to infinite-dimensional time-delay systems. The efficiency of the proposed algorithm is demonstrated by the practical application arising from autonomous driving in mixed traffic environments, where human drivers’ reaction delay is considered. 
    more » « less
  4. We address the security of a network of Connected and Automated Vehicles (CAVs) cooperating to safely navigate through a conflict area (e.g., traffic intersections, merging roadways, roundabouts). Previous studies have shown that such a network can be targeted by adversarial attacks causing traffic jams or safety violations ending in collisions. We focus on attacks targeting the V2X communication network used to share vehicle data and consider as well uncertainties due to noise in sensor measurements and communication channels. To combat these, motivated by recent work on the safe control of CAVs, we propose a trust-aware robust event-triggered decentralized control and coordination framework that can provably guarantee safety. We maintain a trust metric for each vehicle in the network computed based on their behavior and used to balance the tradeoff between conservativeness (when deeming every vehicle as untrustworthy) and guaranteed safety and security. It is important to highlight that our framework is invariant to the specific choice of the trust framework. Based on this framework, we propose an attack detection and mitigation scheme which has twofold benefits: (i) the trust framework is immune to false positives, and (ii) it provably guarantees safety against false positive cases. We use extensive simulations (in SUMO and CARLA) to validate the theoretical guarantees and demonstrate the efficacy of our proposed scheme to detect and mitigate adversarial attacks. 
    more » « less
  5. Ensuring the safety of vulnerable road users (VRUs) such as pedestrians, users of micro-mobility vehicles, and cyclists is imperative for the commercialization of automated vehicles (AVs) in urban traffic scenarios. City traffic intersections are of particular concern due to the precarious situations VRUs often encounter when navigating these locations, primarily because of the unpredictable nature of urban traffic. Earlier work from the Institute of Automated Vehicles (IAM) has developed and evaluated Driving Assessment (DA) metrics for analyzing car following scenarios. In this work, we extend those evaluations to an urban traffic intersection testbed located in downtown Tempe, Arizona. A multimodal infrastructure sensor setup, comprising a high-density, 128-channel LiDAR and a 720p RGB camera, was employed to collect data during the dusk period, with the objective of capturing data during the transition from daylight to night. In this study, we present and empirically assess the benefits of high-density LiDAR in low-light and dark conditions—a persistent challenge in VRU detection when compared to traditional RGB traffic cameras. Robust detection and tracking algorithms were utilized for analyzing VRU-to-vehicle and vehicle-to-vehicle interactions using the LiDAR data. The analysis explores the effectiveness of two DA metrics based on the i.e. Post Encroachment Time (PET) and Minimum Distance Safety Envelope (MDSE) formulations in identifying potentially unsafe scenarios for VRUs at the Tempe intersection. The codebase for the data pipeline, along with the high-density LiDAR dataset, has been open-sourced with the goal of benefiting the AV research community in the development of new methods for ensuring safety at urban traffic intersections. 
    more » « less