We present here the design, architecture, and first data release for the Solar System Notification Alert Processing System (SNAPS). SNAPS is a solar system broker that ingests alert data from all-sky surveys. At present, we ingest data from the Zwicky Transient Facility (ZTF) public survey, and we will ingest data from the forthcoming Legacy Survey of Space and Time (LSST) when it comes online. SNAPS is an official LSST downstream broker. In this paper we present the SNAPS design goals and requirements. We describe the details of our automatic pipeline processing in which the physical properties of asteroids are derived. We present SNAPShot1, our first data release, which contains 5,458,459 observations of 31,693 asteroids observed by ZTF from 2018 July to 2020 May. By comparing a number of derived properties for this ensemble to previously published results for overlapping objects we show that our automatic processing is highly reliable. We present a short list of science results, among many that will be enabled by our SNAPS catalog: (1) we demonstrate that there are no known asteroids with very short periods and high amplitudes, which clearly indicates that in general asteroids in the size range 0.3–20 km are strengthless; (2)more »
The Jupiter Trojans are a large group of asteroids that are coorbiting with Jupiter near its L4 and L5 Lagrange points. The study of Jupiter Trojans is crucial for testing different models of planet formation that are directly related to our understanding of solar system evolution. In this work, we select known Jupiter Trojans listed by the Minor Planet Center from the full six years data set (Y6) of the Dark Energy Survey (DES) to analyze their photometric properties. The DES data allow us to study Jupiter Trojans with a fainter magnitude limit than previous studies in a homogeneous survey with
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10385377
- Journal Name:
- The Planetary Science Journal
- Volume:
- 3
- Issue:
- 12
- Page Range or eLocation-ID:
- Article No. 269
- ISSN:
- 2632-3338
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We use Atacama Large Millimeter Array (ALMA) measurements of 870
μ m thermal emission from a sample of midsized (15–40 km diameter) Jupiter Trojan asteroids to search for high-albedo objects in this population. We calculate the diameters and albedos of each object using a thermal model which also incorporates contemporaneous Zwicky Transient Facility photometry to accurately measure the absolute magnitude at the time of the ALMA observation. We find that while many albedos are lower than reported from WISE, several small Trojans have high albedos independently measured both from ALMA and from WISE. The number of these high-albedo objects is approximately consistent with expectations of the number of objects that recently have undergone large-scale impacts, suggesting that the interiors of freshly-crated Jupiter Trojans could contain high-albedo materials such as ices. -
Abstract Due to their strong resonances with their host planet, Trojan asteroids can remain in stable orbits for billions of years. As a result, they are powerful probes for constraining the dynamical and chemical history of the solar system. Although we have detected thousands of Jupiter Trojans and dozens of Neptune Trojans, there are currently no known long-term stable Earth Trojans (ETs). Dynamical simulations show that the parameter space for stable ETs is substantial, so their apparent absence poses a mystery. This work uses a large ensemble of
N -body simulations to explore how the Trojan population dynamically responds if Earth suffers large collisions, such as those thought to have occurred to form the Moon and/or to have given Earth its late veneer. We show that such collisions can be highly disruptive to the primordial Trojan population, and could have eliminated it altogether. More specifically, if Earth acquired the final 1% of its mass through collisions, then only ∼1% of the previously bound Trojan population would remain. -
Abstract Stellar mass is a fundamental parameter that is key to our understanding of stellar formation and evolution, as well as the characterization of nearby exoplanet companions. Historically, stellar masses have been derived from long-term observations of visual or spectroscopic binary star systems. While advances in high-resolution imaging have enabled observations of systems with shorter orbital periods, measurements of stellar masses remain challenging, and relatively few have been precisely measured. We present a new statistical approach to measuring masses for populations of stars. Using Gaia astrometry, we analyze the relative orbital motion of >3800 wide binary systems comprising low-mass stars to establish a mass–magnitude relation in the Gaia
G RPband spanning the absolute magnitude range 14.5 > > 4.0, corresponding to a mass range of 0.08M ⊙≲M ≲ 1.0M ⊙. This relation is directly applicable to >30 million stars in the Gaia catalog. Based on comparison to existing mass–magnitude relations calibrated forK s magnitudes from the Two Micron All Sky Survey, we estimate that the internal precision of our mass estimates is ∼10%. We use this relation to estimate masses for a volume-limited sample of ∼18,200 stars within 50 pc of the Sun and the present-day field mass function for stars withM ≲ 1.0M ⊙, which wemore » -
Abstract We describe an updated calibration and diagnostic framework, Balrog , used to directly sample the selection and photometric biases of the Dark Energy Survey (DES) Year 3 (Y3) data set. We systematically inject onto the single-epoch images of a random 20% subset of the DES footprint an ensemble of nearly 30 million realistic galaxy models derived from DES Deep Field observations. These augmented images are analyzed in parallel with the original data to automatically inherit measurement systematics that are often too difficult to capture with generative models. The resulting object catalog is a Monte Carlo sampling of the DES transfer function and is used as a powerful diagnostic and calibration tool for a variety of DES Y3 science, particularly for the calibration of the photometric redshifts of distant “source” galaxies and magnification biases of nearer “lens” galaxies. The recovered Balrog injections are shown to closely match the photometric property distributions of the Y3 GOLD catalog, particularly in color, and capture the number density fluctuations from observing conditions of the real data within 1% for a typical galaxy sample. We find that Y3 colors are extremely well calibrated, typically within ∼1–8 mmag, but for a small subset of objects, wemore »