skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Solar System Notification Alert Processing System (SNAPS): Design, Architecture, and First Data Release (SNAPShot1)
Abstract We present here the design, architecture, and first data release for the Solar System Notification Alert Processing System (SNAPS). SNAPS is a solar system broker that ingests alert data from all-sky surveys. At present, we ingest data from the Zwicky Transient Facility (ZTF) public survey, and we will ingest data from the forthcoming Legacy Survey of Space and Time (LSST) when it comes online. SNAPS is an official LSST downstream broker. In this paper we present the SNAPS design goals and requirements. We describe the details of our automatic pipeline processing in which the physical properties of asteroids are derived. We present SNAPShot1, our first data release, which contains 5,458,459 observations of 31,693 asteroids observed by ZTF from 2018 July to 2020 May. By comparing a number of derived properties for this ensemble to previously published results for overlapping objects we show that our automatic processing is highly reliable. We present a short list of science results, among many that will be enabled by our SNAPS catalog: (1) we demonstrate that there are no known asteroids with very short periods and high amplitudes, which clearly indicates that in general asteroids in the size range 0.3–20 km are strengthless; (2) we find no difference in the period distributions of Jupiter Trojan asteroids, implying that the L4 and L5 clouds have different shape distributions; and (3) we highlight several individual asteroids of interest. Finally, we describe future work for SNAPS and our ability to operate at LSST scale.  more » « less
Award ID(s):
2042155 2206796
PAR ID:
10397426
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
3
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 111
Size(s):
Article No. 111
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Solar system Notification Alert Processing System (snaps) is a Zwicky Transient Facility (ZTF) and Rubin Observatory alert broker that will send alerts to the community regarding interesting events in the solar system.snapsis actively monitoring solar system objects and one of its functions is to compare objects (primarily main belt asteroids) to one another to find those that are outliers relative to the population. In this paper, we use theSNAPShot1data set, which contains 31,693 objects from ZTF, and derive outlier scores for each of these objects.snapsemploys an unsupervised approach; consequently, to derive outlier rankings for each object, we propose four different outlier metrics such that we can explore variants of the outlier scores and add confidence to the outlier rankings. We also provide outlier scores for each object in each permutation of 15 feature spaces, between two and 15 features, which yields 32,752 total feature spaces. We show that we can derive population outlier rankings each month at Rubin Observatory scale using four Nvidia A100 GPUs, and present several avenues of scientific investigation that can be explored using population outlier detection. 
    more » « less
  2. Abstract The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (mpeak≤ 18.5 mag) extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual inspection (“scanning”) to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past ∼5 yr of ZTF operations. We presentBTSbot, a multimodal convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 25 extracted features.BTSbotis able to eliminate the need for daily human scanning by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates.BTSbotrecovers all bright transients in our test split and performs on par with scanners in terms of identification speed (on average, ∼1 hr quicker than scanners). We also find thatBTSbotis not significantly impacted by any data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates.BTSbothas been integrated intoFritzandKowalski, ZTF’s first-party marshal and alert broker, and now sends automatic spectroscopic follow-up requests for the new transients it identifies. Between 2023 December and 2024 May,BTSbotselected 609 sources in real time, 96% of which were real extragalactic transients. WithBTSbotand other automation tools, the BTS workflow has produced the first fully automatic end-to-end discovery and classification of a transient, representing a significant reduction in the human time needed to scan. 
    more » « less
  3. Abstract The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multiband wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over five million small bodies. The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor planets and passing interstellar objects. Creating an inventory of the solar system is one of the four main LSST science drivers. The LSST observing cadence is a complex optimization problem that must balance the priorities and needs of all the key LSST science areas. To design the best LSST survey strategy, a series of operation simulations using the Rubin Observatory scheduler have been generated to explore the various options for tuning observing parameters and prioritizations. We explore the impact of the various simulated LSST observing strategies on studying the solar system’s small body reservoirs. We examine what are the best observing scenarios and review what are the important considerations for maximizing LSST solar system science. In general, most of the LSST cadence simulations produce ±5% or less variations in our chosen key metrics, but a subset of the simulations significantly hinder science returns with much larger losses in the discovery and light-curve metrics. 
    more » « less
  4. We present the goals, strategy and first results of the high-cadence Galactic plane survey using the Zwicky Transient Facility (ZTF). The goal of the survey is to unveil the Galactic population of short-period variable stars, including short period binaries and stellar pulsators with periods less than a few hours. Between June 2018 and January 2019, we observed 64 ZTF fields resulting in 2990 deg2 of high stellar density in ZTF-r band along the Galactic Plane. Each field was observed continuously for 1.5 to 6 hrs with a cadence of 40 sec. Most fields have between 200 and 400 observations obtained over 2-3 continuous nights. As part of this survey we extract a total of ≈230 million individual objects with at least 80 epochs obtained during the high-cadence Galactic Plane survey reaching an average depth of ZTF-r ≈20.5 mag. For four selected fields with 2 million to 10 million individual objects per field we calculate different variability statistics and find that ≈1-2% of the objects are astrophysically variable over the observed period. We present a progress report on recent discoveries, including a new class of compact pulsators, the first members of a new class of Roche Lobe filling hot subdwarf binaries as well as new ultracompact double white dwarfs and flaring stars. Finally we present a sample of 12 new single-mode hot subdwarf B-star pulsators with pulsation amplitudes between ZTF-r = 20-76 mmag and pulsation periods between P = 5.8-16 min with a strong cluster of systems with periods ≈ 6 min. All of the data have now been released in either ZTF Data Release 3 or data release 4. 
    more » « less
  5. Abstract We present a scalable, cloud-based science platform solution designed to enable next-to-the-data analyses of terabyte-scale astronomical tabular data sets. The presented platform is built on Amazon Web Services (over Kubernetes and S3 abstraction layers), utilizes Apache Spark and the Astronomy eXtensions for Spark for parallel data analysis and manipulation, and provides the familiar JupyterHub web-accessible front end for user access. We outline the architecture of the analysis platform, provide implementation details and rationale for (and against) technology choices, verify scalability through strong and weak scaling tests, and demonstrate usability through an example science analysis of data from the Zwicky Transient Facility’s 1Bn+ light-curve catalog. Furthermore, we show how this system enables an end user to iteratively build analyses (in Python) that transparently scale processing with no need for end-user interaction. The system is designed to be deployable by astronomers with moderate cloud engineering knowledge, or (ideally) IT groups. Over the past 3 yr, it has been utilized to build science platforms for the DiRAC Institute, the ZTF partnership, the LSST Solar System Science Collaboration, and the LSST Interdisciplinary Network for Collaboration and Computing, as well as for numerous short-term events (with over 100 simultaneous users). In a live demo instance, the deployment scripts, source code, and cost calculators are accessible.44http://hub.astronomycommons.org/ 
    more » « less