skip to main content

Title: Privacy-Preserving Object Detection with Secure Convolutional Neural Networks for Vehicular Edge Computing
With the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor data from vehicles can be observed and used by edge servers. We aim to address the privacy problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks, named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s sensor data is split and encrypted into multiple secret shares, each of which is processed on an edge server by going through the secure layers of a detection network. The detection results can only be obtained by combining the partial results from the participating edge servers. We have developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders of magnitude faster than the existing approaches for data privacy. To the best of our knowledge, this is the first work that targets privacy protection in object-detection tasks with vehicle–edge cooperative computing.  more » « less
Award ID(s):
1852134 2225229 2113805 2037982 2017564
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Future Internet
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected Autonomous Vehicles (CAVs) have achieved significant improvements in recent years. The CAVs can share sensor data to improve autonomous driving performance and enhance road safety. CAV architecture depends on roadside edge servers for latency-sensitive applications. The roadside edge servers are equipped with high-performance embedded edge computing devices that perform calculations with low power requirements. As the number of vehicles varies over different times of the day and vehicles can request for different CAV applications, the computation requirements for roadside edge computing platform can also vary. Hence, a framework for dynamic deployment of edge computing platforms can ensure CAV applications’ performance and proper usage of the devices. In this paper, we propose R-CAV – a framework for drone-based roadside edge server deployment that provides roadside units (RSUs) based on the computation requirement. Our proof of concept implementation for object detection algorithm using Nvidia Jetson nano demonstrates the proposed framework's feasibility. We posit that the framework will enhance the intelligent transport system vision by ensuring CAV applications’ quality of service. 
    more » « less
  2. Cloud computing infrastructures have become the de-facto platform for data driven machine learning applications. However, these centralized models of computing are unqualified for dispersed high volume real-time edge data intensive applications such as real time object detection, where video streams may be captured at multiple geographical locations. While many recent advancements in object detection have been made using Convolutional Neural Networks but these performance improvements only focus on a single contiguous object detection model. In this paper, we propose a distributed Edge-Cloud R-CNN by splitting the model into components and dynamically distributing these components in the cloud for optimal performance for real time object detection. As a proof of concept, we evaluate the performance of the proposed system on a distributed computing platform encompasses cloud servers and edge embedded devices for real-time object detection on video streams. 
    more » « less
  3. Edge Computing is a new computing paradigm where applications operate at the network edge, providing low-latency services with augmented user and data privacy. A desirable goal for edge computing is pervasiveness, that is, enabling any capable and authorized entity at the edge to provide desired edge services--pervasive edge computing (PEC). However, efficient access control of users receiving services and edge servers handling user data, without sacrificing performance is a challenge. Current solutions, based on "always-on" authentication servers in the cloud, negate the latency benefits of services at the edge and also do not preserve user and data privacy. In this paper, we present APECS, an advanced access control framework for PEC, which allows legitimate users to utilize any available edge services without need for communication beyond the network edge. The APECS framework leverages multi-authority attribute-based encryption to create a federated authority, which delegates the authentication and authorization tasks to semi-trusted edge servers, thus eliminating the need for an "always-on" authentication server in the cloud. Additionally, APECS prevents access to encrypted content by unauthorized edge servers. We analyze and prove the security of APECS in the Universal Composability framework and provide experimental results on the GENI testbed to demonstrate the scalability and effectiveness of APECS. 
    more » « less
  4. The development of communication technologies in edge computing has fostered progress across various applications, particularly those involving vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. Enhanced infrastructure has improved data transmission network availability, promoting better connectivity and data collection from IoT devices. A notable IoT application is with the Intelligent Transportation System (ITS). IoT technology integration enables ITS to access a variety of data sources, including those pertaining to weather and road conditions. Real-time data on factors like temperature, humidity, precipitation, and friction contribute to improved decision-making models. Traditionally, these models are trained at the cloud level, which can lead to communication and computational delays. However, substantial advancements in cloud-to-edge computing have decreased communication relays and increased computational distribution, resulting in faster response times. Despite these benefits, the developments still largely depend on central cloud sources for computation due to restrictions in computational and storage capacity at the edge. This reliance leads to duplicated data transfers between edge servers and cloud application servers. Additionally, edge computing is further complicated by data models predominantly based on data heuristics. In this paper, we propose a system that streamlines edge computing by allowing computation at the edge, thus reducing latency in responding to requests across distributed networks. Our system is also designed to facilitate quick updates of predictions, ensuring vehicles receive more pertinent safety-critical model predictions. We will demonstrate the construction of our system for V2V and V2I applications, incorporating cloud-ware, middleware, and vehicle-ware levels. 
    more » « less
  5. The vehicular fog is a relatively new computing paradigm where fog computing works with the vehicular network. It provides computation, storage, and location-aware services with low latency to the vehicles in close proximity. A vehicular fog network can be formed on-the-fly by adding underutilized or unused resources of nearby parked or moving vehicles. Interested vehicles can outsource their resources or data by being added to the vehicular fog network while maintaining proper security and privacy. Client vehicles can use these resources or services for performing computation-intensive tasks, storing data, or getting crowdsource reports through the proper secure and privacy-preserving communication channel. As most vehicular network applications are latency and location sensitive, fog is more suitable than the cloud because of the capability of performing calculations with low latency, location awareness, and the support of mobility. Architecture, security, and privacy models of vehicular fog are not well defined and widely accepted yet as it is in its early stage. In this paper, we have analyzed existing studies on vehicular fog to determine the requirements and issues related to the architecture, security, and privacy of vehicular fog computing. We have also identified and highlighted the open research problems in this promising area. 
    more » « less