skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Analysis of Stationary Dynamics of Piecewise-Linear Nonlinear Systems Modeled Using General State-Space Representations
Abstract In this paper, a new technique is presented for parametrically studying the steady-state dynamics of piecewise-linear nonsmooth oscillators. This new method can be used as an efficient computational tool for analyzing the nonlinear behavior of dynamic systems with piecewise-linear nonlinearity. The new technique modifies and generalizes the bilinear amplitude approximation method, which was created for analyzing proportionally damped structural systems, to more general systems governed by state-space models; thus, the applicability of the method is expanded to many engineering disciplines. The new method utilizes the analytical solutions of the linear subsystems of the nonsmooth oscillators and uses a numerical optimization tool to construct the nonlinear periodic response of the oscillators. The method is validated both numerically and experimentally in this work. The proposed computational framework is demonstrated on a mechanical oscillator with contacting elements and an analog circuit with nonlinear resistance to show its broad applicability.  more » « less
Award ID(s):
1902408
PAR ID:
10399949
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Computational and Nonlinear Dynamics
Volume:
17
Issue:
8
ISSN:
1555-1415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coulomb friction has an influence on the behavior of numerous mechanical systems. Coulomb friction systems or dry friction systems are nonlinear in nature. This nonlinear behavior requires complex and time-demanding analysis tools to capture the dynamics of these systems. Recently, efforts have been made to develop efficient analysis tools able to approximate the forced response of systems with dry friction. The objective of this paper is to introduce a methodology that assists in these efforts. In this method, the piecewise linear nonlinear response is separated into individual linear responses that are coupled together through compatibility equations. The new method is demonstrated on a number of systems of varying complexity. The results obtained by the new method are validated through the comparison with results obtained by time integration. The computational savings of the new method are also discussed. 
    more » « less
  2. A general formulation of piecewise linear systems with discontinuous force elements is provided in this paper. It has been demonstrated that this class of nonlinear systems is of great importance due to their ability to accurately model numerous scientific and engineering phenomena. Additionally, it is shown that this class of nonlinear systems can demonstrate a wide spectrum of nonlinear motions and in fact, the phenomenon of weak chaos is observed in a mechanical assembly for the first time. Despite such importance, efficient methods for fast and accurate evaluation of piecewise linear systems’ responses are lacking and the methods of the literature are either incompatible, very slow, very inaccurate, or bear a combination of the aforementioned deficiencies. To overcome this shortcoming, a novel symbolic-numeric method is presented in this paper that is able to obtain the analytical response of piecewise linear systems with discontinuous elements in an efficient manner. Contrary to other efficient methods that are based on stationary steady state dynamics, this method will not experience failure upon the occurrence of complex motion and is able to capture the entirety of the dynamics. 
    more » « less
  3. Abstract Quasi-periodic motions can be numerically found in piecewise-linear systems, however, their characteristics have not been well understood. To illustrate this, an incremental harmonic balance (IHB) method with two timescales is extended in this work to analyze quasi-periodic motions of a non-smooth dynamic system, i.e., a gear transmission system with piecewise linearity stiffness. The gear transmission system is simplified to a four degree-of-freedom nonlinear dynamic model by using a lumped mass method. Nonlinear governing equations of the gear transmission system are formulated by utilizing the Newton’s second law. The IHB method with two timescales applicable to piecewise-linear systems is employed to examine quasi-periodic motions of the gear transmission system whose Fourier spectra display uniformly spaced sideband frequencies around carrier frequencies. The Floquet theory is extended to analyze quasi-periodic solutions of piecewise-linear systems based on introduction of a small perturbation on a steady-state quasi-periodic solution of the gear transmission system with piecewise linearities. Comparison with numerical results calculated using the fourth-order Runge-Kutta method confirms that excellent accuracy of the IHB method with two timescales can be achieved with an appropriate number of harmonic terms. 
    more » « less
  4. Abstract A wide range of mechanical systems have gaps, cracks, intermittent contact or other geometrical discontinuities while simultaneously experiencing Coulomb friction. A piecewise linear model with discontinuous force elements is discussed in this paper that has the capability to accurately emulate the behavior of such mechanical assemblies. The mathematical formulation of the model is standardized via a universal differential inclusion and its behavior, in different scenarios, is studied. In addition to the compatibility of the proposed model with numerous industrial systems, the model also bears significant scientific value since it can demonstrate a wide spectrum of motions, ranging from periodic to chaotic. Furthermore, it is demonstrated that this class of models can generate a rare type of motion, called weakly chaotic motion. After their detailed introduction and analysis, an efficient hybrid symbolic-numeric computational method is introduced that can accurately obtain the arbitrary response of this class of nonlinear models. The proposed method is capable of treating high dimensional systems and its proposition omits the need for utilizing model reduction techniques for a wide range of problems. In contrast to the existing literature focused on improving the computational performance when analyzing these systems when there is a periodic response, this method is able to capture transient and nonstationary dynamics and is not restricted to only steady-state periodic responses. 
    more » « less
  5. A Task Decomposition method for iterative learning Model Predictive Control (TDMPC) for linear time-varying systems is presented. We consider the availability of state- input trajectories which solve an original task T1, and design a feasible MPC policy for a new task, T2, using stored data from T1. Our approach applies to tasks T2 which are composed of subtasks contained in T1. In this paper we formally define the task decomposition problem, and provide a feasibility proof for the resulting policy. The proposed algorithm reduces the computational burden for linear time-varying systems with piecewise convex constraints. Simulation results demonstrate the improved efficiency of the proposed method on a robotic path-planning task. 
    more » « less