skip to main content


Title: Finite Dimensional Functional Observer Design for Parabolic Systems
This paper combines two control design aspects for a class of infinite dimensional systems, and each of the designs aims at significantly reducing the implementation complexity and computational load. A functional observer, and its extension of an unknown input functional observer, aims to reconstruct a functional of the infinite dimensional state. The resulting compensator only requires the solution to an operator Sylvester equation plus one differential equation for each dimension of the control signal, as opposed to an infinite dimensional filter evolution equation and an associated operator Riccati equation for the filter operator covariance. When the functional to be estimated coincides with the expression of a full state feedback control signal, then the functional observer becomes the minimum order compensator. When the parabolic system admits a decomposition whereby the system is decomposed into a lower finite dimensional subspace comprising the unstable eigenspectrum and an infinite stable subspace, then the functional observer-based compensator design becomes the minimum order compensator for the finite dimensional subsystem. This approach dramatically reduces the computation for solving the ARE needed for the full state controller and the associated Sylvester equation needed for the functional observer. Numerical results for a parabolic PDE in one and two spatial dimensions are included.  more » « less
Award ID(s):
1825546
NSF-PAR ID:
10385851
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 60th IEEE Conference on Decision and Control
Page Range / eLocation ID:
1155 to 1160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper revisits the design of compensator-based controller for a class of infinite dimensional systems. In order to save computational time, a functional observer is employed to reconstruct a functional of the state which coincides with the full state feedback control signal. Such a full-state feedback corresponds to an idealized case wherein the state is available. Instead of reconstructing the entire state via a state-observer and then use this state estimate in a controller expression, a functional observer is used to estimate the product of the state and the feedback operator, thus resulting in a significant reduction in computational load. This observer design is subsequently integrated with a sensor selection in order to improve controller performance. An appropriate metric is used to optimize the sensor location resulting in improved performance of the functional observer-based compensator. The integrated design is further extended to include a controller with an unknown input functional observer. The results are applied to 2D partial differential equations and detailed numerical studies are included to provide an appreciation in the significant savings in both operational and computational costs. 
    more » « less
  2. This paper extends earlier results on the adaptive estimation of nonlinear terms in finite dimensional systems utilizing a reproducing kernel Hilbert space to a class of positive real infinite dimensional systems. The simplest class of strictly positive real infinite dimensional systems has collocated input and output operators with the state operator being the generator of an exponentially stable C 0 semigroup on the state space X . The parametrization of the nonlinear term is considered in a reproducing kernel Hilbert space Q and together with the adaptive observer, results in an evolution system considered in X × Q. Using Lyapunov-redesign methods, the adaptive laws for the parameter estimates are derived and the well-posedness of the resulting evolution error system is summarized. The adaptive estimate of the unknown nonlinearity is subsequently used to compensate for the nonlinearity. A special case of finite dimensional systems with an embedded reproducing kernel Hilbert space to handle the nonlinear term is also considered and the convergence results are summarized. A numerical example on a one-dimensional diffusion equation is considered. 
    more » « less
  3. . (Ed.)
    This paper proposes a new approach for the adaptive functional estimation of second order infinite dimensional systems with structured perturbations. First, the proposed observer is formulated in the natural second order setting thus ensuring the time derivative of the estimated position is the estimated velocity, and therefore called natural adaptive observer. Assuming that the system does not yield a positive real system when placed in first order form, then the next step in deriving parameter adaptive laws is to assume a form of input-output collocation. Finally, to estimate structured perturbations taking the form of functions of the position and/or velocity outputs, the parameter space is not identified by a finite dimensional Euclidean space but instead is considered in a Reproducing Kernel Hilbert Space. Such a setting allows one not to be restricted by a priori assumptions on the dimension of the parameter spaces. Convergence of the position and velocity errors in their respective norms is established via the use of a parameter-dependent Lyapunov function, specifically formulated for second order infinite dimensional systems that include appropriately defined norms of the functional errors in the reproducing kernel Hilbert spaces. Boundedness of the functional estimates immediately follow and via an appropriate definition of a persistence of excitation condition for functional estimation, a functional convergence follows. When the system is governed by vector second order dynamics, all abstract spaces for the state evolution collapse to a Euclidean space and the natural adaptive observer results simplify. Numerical results of a second order PDE and a multi-degree of freedom finite dimensional mechanical system are presented. 
    more » « less
  4. Summary

    This article presents a nonlinear closed‐loop active flow control (AFC) method, which achieves asymptotic regulation of a fluid flow velocity field in the presence of actuator uncertainty and sensor measurement limitations. To achieve the result, a reduced‐order model of the flow dynamics is derived, which utilizes proper orthogonal decomposition (POD) to express the Navier‐Stokes equations as a set of nonlinear ordinary differential equations. The reduced‐order model formally incorporates the actuation effects of synthetic jet actuators (SJA). Challenges inherent in the resulting POD‐based reduced‐order model include (1) the states are not directly measurable, (2) the measurement equation is in a nonstandard mathematical form, and (3) the SJA model contains parametric uncertainty. To address these challenges, a sliding mode observer (SMO) is designed to estimate the unmeasurable states in the reduced‐order model of the actuated flow field dynamics. A salient feature of the proposed SMO is that it formally compensates for the parametric uncertainty inherent in the SJA model. The SMO is rigorously proven to achieve local finite‐time estimation of the unmeasurable state in the presence of the parametric uncertainty in the SJA. The state estimates are then utilized in a nonlinear control law, which regulates the flow field velocity to a desired state. A Lyapunov‐based stability analysis is provided to prove local asymptotic regulation of the flow field velocity. To illustrate the performance of the proposed estimation and AFC method, comparative numerical simulation results are provided, which demonstrate the improved performance that is achieved by incorporating the uncertainty compensator.

     
    more » « less
  5. The Sylvester equation offers a powerful and unifying primitive for a variety of important graph mining tasks, including network alignment, graph kernel, node similarity, subgraph matching, etc. A major bottleneck of Sylvester equation lies in its high computational complexity. Despite tremendous effort, state-of-the-art methods still require a complexity that is at least \em quadratic in the number of nodes of graphs, even with approximations. In this paper, we propose a family of Krylov subspace based algorithms (\fasten) to speed up and scale up the computation of Sylvester equation for graph mining. The key idea of the proposed methods is to project the original equivalent linear system onto a Kronecker Krylov subspace. We further exploit (1) the implicit representation of the solution matrix as well as the associated computation, and (2) the decomposition of the original Sylvester equation into a set of inter-correlated Sylvester equations of smaller size. The proposed algorithms bear two distinctive features. First, they provide the \em exact solutions without any approximation error. Second, they significantly reduce the time and space complexity for solving Sylvester equation, with two of the proposed algorithms having a \em linear complexity in both time and space. Experimental evaluations on a diverse set of real networks, demonstrate that our methods (1) are up to $10,000\times$ faster against Conjugate Gradient method, the best known competitor that outputs the exact solution, and (2) scale up to million-node graphs. 
    more » « less