skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Long-Term Performance of Solitary Wave-Based Transducers for Nondestructive Evaluation Applications
Abstract A nondestructive evaluation (NDE) technique based on highly nonlinear solitary waves (HNSWs) has been developed recently by a few groups worldwide. The technique is based on the propagation and detection of these waves along a one-dimensional monoperiodic array of spherical particles in which one end of the array is in contact with the material/structure to be inspected, and the particle at the opposite end induces the waves by means of a mechanical impact. Several studies have demonstrated that the dynamic interaction between the waves and the element to be evaluated is dependent on the geometric and mechanical properties of the structure, and such dependency can be monitored by sensing the waves reflected at the interface between the array and the structure. This NDE technique is typically performed by using the so-called HNSW transducer. The term transducer indicates a portable device that consists of a monoperiodic array of particles, a device to trigger the waves, and a sensing element to detect the waves. In the study presented in this article, the long-term performance of three transducers was investigated by placing them above a test object whose mechanical and geometric properties were left constant for a week while the transducers triggered and detected thousands of waves. Any variability of the waves was quantified by extracting simple features such as amplitude, time of flight, and cross-correlation. To investigate the cause of variabilities, 16 measurements were captured with short videos at ∼1000 fps. The results of the study demonstrate that the traveling time of the solitary waves is the most reliable parameter for long-term monitoring with the lowest variability and the least susceptibility to physical changes within the array. In addition, the findings of this study allow the framing of a valid strategy to improve the design of the transducers in order to make the HNSW-based technique suitable for long-term monitoring.  more » « less
Award ID(s):
1809932
PAR ID:
10385896
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
Volume:
5
Issue:
4
ISSN:
2572-3901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, there has been an increasing interest in the use of highly nonlinear solitary waves (HNSWs) for nondestructive evaluation and structural health monitoring applications. HNSWs are mechanical waves that can form and travel in highly nonlinear systems, such as granular particles in Hertzian contact. The easiest setup consists of a built-in transducer in drypoint contact with the structure or material to be inspected/monitored. The transducer is made of a monoperiodic array of spherical particles that enables the excitation and detection of the solitary waves. The transducer is wired to a data acquisition system that controls the functionality of the transducer and stores the time series for post-processing. In this paper, the design and testing of a wireless unit that enables the remote control of a transducer without the need to connect it to sophisticated test equipment are presented. Comparative tests and analyses between the measurements obtained with the newly designed wireless unit and the conventional wired configuration are provided. The results are corroborated by an analytical model that predicts the dynamic interaction between solitary waves and materials with different modulus. The advantages and limitations of the proposed wireless platform are given along with some suggestions for future developments. 
    more » « less
  2. This article presents a method to monitor corrosion remotely, based on highly nonlinear solitary waves, which are compact and nondispersive. In the study presented in this article, two types of solitary wave transducers were used to monitor accelerated localized corrosion on a steel plate. The first type consists of a chain of spherical particles surmounted by a commercial solenoid wired to, and controlled by, a data acquisition system used to lift and release the first particle of the chain and induce the mechanical impacts and stress waves in the chain. The chain included a piezoelectric wafer disk, also wired to the same data acquisition system, to sense, digitize, and store the propagating waves for post-processing. The second type of transducer was identical to the first one but the data acquisition system was replaced by a wireless node that communicated with a mobile device using a Bluetooth connection. Eight transducers were used to monitor the plate for over a week to detect the onset and progression of localized corrosion. Corrosion detection was performed by extracting a few features from the time waveforms and feeding these features to an outlier analysis algorithm based on the Mahalanobis distance. The results of the experiment showed the effectiveness of the proposed monitoring approach at detecting defects close to the transducers and confirm previous numerical predictions by the authors. The experiments also provided evidence that the performance of the wireless transducers is nearly identical to the performance of their wired counterparts, paving the way to a new paradigm for the structural health monitoring of remote structural components in harsh environments. 
    more » « less
  3. Analysis of interdigitated transducers often relies on phenomenological models to approximate device electrical performance. While these approaches prove essential for signal processing applications, phenomenological models provide limited information on the device’s mechanical response and physical characteristics of the generated acoustic field. Finite element method modeling, in comparison, offers a robust platform to study the effects of the full device geometry on critical performance parameters of interdigitated transducer devices. In this study, we fabricate a surface acoustic wave resonator on semi-insulating GaAs [Formula: see text], which consists of an interdigitated transducer and acoustic mirror assembly. The device is subsequently modeled using fem software. A vector network analyzer is used to measure the experimental device scattering response, which compares well with the simulated results. The wave characteristics of the experimental device are measured by contact-mode atomic force microscopy, which validates the simulation’s mechanical response predictions. We further show that a computational parametric analysis can be used to optimize device designs for series resonance frequency, effective coupling coefficient, quality factor, and maximum acoustic surface displacement. 
    more » « less
  4. Abstract Painless, needleless delivery of drugs through the skin can be realized through aphenomenon called sonophoresis by applying an ultrasound field to the biological tissue. Development of wearable embodiments of such systems demands comprehensive characterization of both the physical mechanism of sonophoresisas well as wearability parameters. Here, we present a framework for analyzing disk‐type piezoelectric transducers in a polymeric substrate to create acoustic cavitation in a fluid coupling medium for sonophoresis applications. The device design and operating parameters such as the working frequency, applied voltage range, acoustic pressure distribution, and transducer spacing were determine dusing a finite element methods (FEM),and verified with experimental measurements. The influence of the surrounding water and tank reflections on the acoustic pressure field, and the interaction between the elements in the array structure were also studied.Finally, the impact of skin and the substrate geometry on the acoustic pressure fields was characterized to simulate the invivo use‐case of the system. These analytical models can be used to guide critical parameters for device design such as the separation distance of the piezoelectric transducer from the skin boundary. We envision that this tool boxwill support rapid design iteration for realization of wearable ultrasound systems. 
    more » « less
  5. Spherically focused transducers have been long relied on to target acoustic energy delivery. Yet, these structures have limitations with respect to size and mobility for medical treatment applications. Recent developments in the field of reconfigurable structures reveal that the ancient art of origami inspires new platforms by which to enable spherical shapes that are additionally foldable for ease of transport. This research explores the opportunities for a unique, flat foldable doubly curved tessellated array to enable wave focusing capability similar to an ideal medical transducer shape: the spherical cap transducer. An analytical model of the doubly curved array is created and validated against data collected from a proof-of-concept array. The model is then leveraged to understand how the array design and complexity relatively govern the wave focusing capability. The findings show that doubly curved acoustic arrays do not require excessive facet refinement to achieve wave focusing similar to nominal spherically focused transducers. Yet, the optimal frequencies for which such capability is borne out vary substantially on the basis of array design. The discoveries of this research motivate future consideration of flat foldable doubly curved acoustic arrays for potential implementation into medical transducer development for hard-to-access surgical treatments. 
    more » « less