skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zn‐Doped P‐Type InAs Nanocrystal Quantum Dots
Abstract Doped heavy metal‐free III–V semiconductor nanocrystal quantum dots (QDs) are of great interest both from the fundamental aspects of doping in highly confined structures, and from the applicative side of utilizing such building blocks in the fabrication of p–n homojunction devices. InAs nanocrystals (NCs), that are of particular relevance for short‐wave IR detection and emission applications, manifest heavy n‐type character poising a challenge for their transition to p‐type behavior. The p‐type doping of InAs NCs is presented with Zn – enabling control over the charge carrier type in InAs QDs field effect transistors. The post‐synthesis doping reaction mechanism is studied for Zn precursors with varying reactivity. Successful p‐type doping is achieved by the more reactive precursor, diethylzinc. Substitutional doping by Zn2+replacing In3+is established by X‐ray absorption spectroscopy analysis. Furthermore, enhanced near infrared photoluminescence is observed due to surface passivation by Zn as indicated from elemental mapping utilizing high‐resolution electron microscopy corroborated by X‐ray photoelectron spectroscopy study. The demonstrated ability to control the carrier type, along with the improved emission characteristics, paves the way towards fabrication of optoelectronic devices active in the short‐wave infrared region utilizing heavy‐metal free nanocrystal building blocks.  more » « less
Award ID(s):
2102299
PAR ID:
10385998
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
5
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigated the pressure-dependent exciton absorption and photoluminescence (PL) properties of colloidal InAs/ZnSe core/shell quantum dots (QDs) emitting near-infrared (NIR) photons, an environmentally friendly alternative to heavy-metal-containing NIR QDs. A detailed analysis of exciton absorption and emission spectra was conducted in the pressure range of 0–10 GPa, focusing on the energy shifts, PL intensity, and lineshape changes with pressure. The pressure coefficients for exciton absorption and PL peaks were ∼70% of the bulk InAs value, with enhanced bandgap nonlinearity tentatively attributed to the higher bulk modulus of QDs compared to bulk material. The pressure-induced shifts in exciton absorption and PL peaks were reversible upon compression and decompression, with no indication of the semiconductor-to-metallic phase transition observed in bulk InAs around 7 GPa. However, PL intensity exhibited partial irreversibility, suggesting defect formation at the core/shell interface under pressure. From the findings of this study, along with previous high-pressure studies on molecular beam epitaxy-grown InAs QDs on GaAs, we infer the importance of the shell in determining the pressure response of exciton absorption and PL in core/shell QD structures with non-negligible interfacial strain and wave function spill into the shell. 
    more » « less
  2. The field-effect electron mobility of aqueous solution-processed indium gallium oxide (IGO) thin-film transistors (TFTs) is significantly enhanced by polyvinyl alcohol (PVA) addition to the precursor solution, a >70-fold increase to 7.9 cm2/Vs. To understand the origin of this remarkable phenomenon, microstructure, electronic structure, and charge transport of IGO:PVA film are investigated by a battery of experimental and theoretical techniques, including In K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS); resonant soft X-ray scattering (R-SoXS); ultraviolet photoelectron spectroscopy (UPS); Fourier transform-infrared (FT-IR) spectroscopy; time-of-flight secondary-ion mass spectrometry (ToF-SIMS); composition-/processing-dependent TFT properties; high-resolution solid-state1H,71Ga, and115In NMR spectroscopy; and discrete Fourier transform (DFT) analysis with ab initio molecular dynamics (MD) liquid-quench simulations. The71Ga{1H} rotational-echo double-resonance (REDOR) NMR and other data indicate that PVA achieves optimal H doping with a Ga···H distance of ∼3.4 Å and conversion from six- to four-coordinate Ga, which together suppress deep trap defect localization. This reduces metal-oxide polyhedral distortion, thereby increasing the electron mobility. Hydroxyl polymer doping thus offers a pathway for efficient H doping in green solvent-processed metal oxide films and the promise of high-performance, ultra-stable metal oxide semiconductor electronics with simple binary compositions. 
    more » « less
  3. null (Ed.)
    Cobalt( ii ) ions were adsorbed to the surface of rod-shape anatase TiO 2 nanocrystals and subsequently heated to promote ion diffusion into the nanocrystal. After removal of any remaining surface bound cobalt, a sample consisting of strictly cobalt-doped TiO 2 was obtained and characterized with powder X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy, SQUID magnetometry, and inductively-coupled plasma atomic emission spectroscopy. The nanocrystal morphology was unchanged in the process and no new crystal phases were detected. The concentration of cobalt in the doped samples linearly correlates with the initial loading of cobalt( ii ) ions on the nanocrystal surface. Thin films of the cobalt doped TiO 2 nanocrystals were prepared on indium-tin oxide coated glass substrate, and the electrical conductivity increased with the concentration of doped cobalt. Magnetic measurements of the cobalt-doped TiO 2 nanocrystals reveal paramagnetic behavior at room temperature, and antiferromagnetic interactions between Co ions at low temperatures. Antiferromagnetism is atypical for cobalt-doped TiO 2 nanocrystals, and is proposed to arise from interstitial doping that may be favored by the diffusional doping mechanism. 
    more » « less
  4. Abstract All‐inorganic CsPbI3quantum dots (QDs) have shown great potential in photovoltaic applications. However, their performance has been limited by defects and phase stability. Herein, an anion/cation synergy strategy to improve the structural stability of CsPbI3QDs and reduce the pivotal iodine vacancy (VI) defect states is proposed. The Zn‐doped CsPbI3(Zn:CsPbI3) QDs have been successfully synthesized employing ZnI2as the dopant to provide Zn2+and extra I. Theoretical calculations and experimental results demonstrate that the Zn:CsPbI3QDs show better thermodynamic stability and higher photoluminescence quantum yield (PLQY) compared to the pristine CsPbI3QDs. The doping of Zn in CsPbI3QDs increases the formation energy and Goldschmidt tolerance factor, thereby improving the thermodynamic stability. The additional Ihelps to reduce theVIdefects during the synthesis of CsPbI3QDs, resulting in the higher PLQY. More importantly, the synergistic effect of Zn2+and Iin CsPbI3QDs can prevent the iodine loss during the fabrication of CsPbI3QD film, inhibiting the formation of newVIdefect states in the construction of solar cells. Consequently, the anion/cation synergy strategy affords the CsPbI3quantum dot solar cells (QDSC) a power conversion efficiency over 16%, which is among the best efficiencies for perovskite QDSCs. 
    more » « less
  5. Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both the distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, the characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal–terpyridine links that enable rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties that are distinct from those of the building blocks or mixed close-packed structures. 
    more » « less