skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FLEX-SDK: An Open-Source Software Development Kit for Creating Social Robots
We present FLEX-SDK: an open-source software development kit that allows creating a social robot from two simple tablet screens. FLEX-SDK involves tools for designing the robot face and its facial expressions, creating screens for input/output interactions, controlling the robot through a Wizard-of-Oz interface, and scripting autonomous interactions through a simple text-based programming interface. We demonstrate how this system can be used to replicate an interaction study and we present nine case studies involving controlled experiments, observational studies, participatory design sessions, and outreach activities in which our tools were used by researchers and participants to create and interact with social robots. We discuss common observations and lessons learned from these case studies. Our work demonstrates the potential of FLEX-SDK to lower the barrier to entry for Human-Robot Interaction research.  more » « less
Award ID(s):
1734100 1924435
PAR ID:
10386131
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
UIST '22: Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper proposes and evaluates the use of image classification for detailed, full-body human-robot tactile interaction. A camera positioned below a translucent robot skin captures shadows generated from human touch and infers social gestures from the captured images. This approach enables rich tactile interaction with robots without the need for the sensor arrays used in traditional social robot tactile skins. It also supports the use of touch interaction with non-rigid robots, achieves high-resolution sensing for robots with different sizes and shape of surfaces, and removes the requirement of direct contact with the robot. We demonstrate the idea with an inflatable robot and a standing-alone testing device, an algorithm for recognizing touch gestures from shadows that uses Densely Connected Convolutional Networks, and an algorithm for tracking positions of touch and hovering shadows. Our experiments show that the system can distinguish between six touch gestures under three lighting conditions with 87.5 - 96.0% accuracy, depending on the lighting, and can accurately track touch positions as well as infer motion activities in realistic interaction conditions. Additional applications for this method include interactive screens on inflatable robots and privacy-maintaining robots for the home. 
    more » « less
  2. Today’s teens will most likely be the first generation to spend a lifetime living and interacting with both mechanical and social robots. Although human-robot interaction has been explored in children, adults, and seniors, examination of teen-robot interaction has been minimal. In this paper, we provide evidence that teenrobot interaction is a unique area of inquiry and designing for teens is categorically different from other types of human-robot interaction. Using human-centered design, our team is developing a social robot to gather stress and mood data from teens in a public high school. To better understand teen-robot interaction, we conducted an interaction study in the wild to explore and capture teens’ interactions with a low-fidelity social robot prototype. Then, through group interviews we gathered data regarding their perceptions about social robots. Although we anticipated minimal engagement due to the low fidelity of our prototype, teens showed strong engagement and lengthy interactions. Additionally, teens expressed thoughtful articulations of how a social robot could be emotionally supportive. We conclude the paper by discussing future areas for consideration when designing for teen-robot interaction. 
    more » « less
  3. In this work, we discuss a theoretically motivated family-centered design approach for child-robot interactions, adapted by Family Systems Theory (FST) and Family Ecological Model (FEM). Long-term engagement and acceptance of robots in the home is influenced by factors that surround the child and the family, such as child-sibling-parent relationships and family routines, rituals, and values. A family-centered approach to interaction design is essential when developing in-home technology for children, especially for social agents like robots with which they can form connections and relationships. We review related literature in family theories and connect it with child-robot interaction and child-computer interaction research. We present two case studies that exemplify how family theories, FST and FEM, can inform the integration of robots into homes, particularly research into child-robot and family-robot interaction. Finally, we pose five overarching recommendations for a family-centered design approach in child-robot interactions. 
    more » « less
  4. Integrating cultural responsiveness into the educational setting is essential to the success of multilingual students. As social robots present the potential to support multilingual children, it is imperative that the design of social robot embodiments and interactions are culturally responsive. This paper summarizes the current literature on educational robots in culturally diverse settings. We argue the use of the Culturally Localized User Experience (CLUE) Framework is essential to ensure cultural responsiveness in HRI design. We present three case studies illustrating the CLUE framework as a social robot design approach. The results of these studies suggest co-design provides multicultural learners an accessible, nonverbal context through which to provide design requirements and preferences. Furthermore, we demonstrate the importance of key stakeholders (students, parents, and teachers) as essential to ensure a culturally responsive robot. Finally, we reflect on our own work with culturally and linguistically diverse learners and propose three guiding principles for successfully engaging diverse learners as valuable cultural informants to ensure the future success of educational robots. 
    more » « less
  5. The social robotics market is appealing yet challenging. Though social robots are built few remain on the market for long. Many reasons account for their short lifespan with costs and context-specificity ranking high amount them. In this work, we designed, fabricated, and developed FLEXI, a social robot embodiment kit that enabled unlimited customization, making it applicable for a broad range of use cases. The hardware and software of FLEXI were entirely developed by this research team from scratch. FLEXI includes a rich set of materials and attachment pieces to allow for a diverse range of hardware customizations that ensure the embodiment is appropriate for specific customer/researcher projects. It also includes an open-source end-user programming interface to lower the barrier of robotics access to interdisciplinary teams that populate the field of Human-Robot Interaction. We present an iterative development of this cost-effective kit through the lenses of case studies, conceptual research, and soft deployment of FLEXI in three application scenarios: community-support, mental health, and education. Additionally, we provide in open-access the full list of materials and a tutorial to fabricate FLEXI, making it accessible to any maker space, research lab, or workshop space interested in working with or learning about social robots. 
    more » « less