skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GeospaceLAB: Python package for managing and visualizing data in space physics
In the space physics community, processing and combining observational and modeling data from various sources is a demanding task because they often have different formats and use different coordinate systems. The Python package GeospaceLAB has been developed to provide a unified, standardized framework to process data. The package is composed of six core modules, including DataHub as the data manager, Visualization for generating publication quality figures, Express for higher-level interfaces of DataHub and Visualization , SpaceCoordinateSystem for coordinate system transformations, Toolbox for various utilities, and Configuration for preferences. The core modules form a standardized framework for downloading, storing, post-processing and visualizing data in space physics. The object-oriented design makes the core modules of GeospaceLAB easy to modify and extend. So far, GeospaceLAB can process more than twenty kinds of data products from nine databases, and the number will increase in the future. The data sources include, e.g., measurements by EISCAT incoherent scatter radars, DMSP, SWARM, and Grace satellites, OMNI solar wind data, and GITM simulations. In addition, the package provides an interface for the users to add their own data products. Hence, researchers can easily collect, combine, and view multiple kinds of data for their work using GeospaceLAB. Combining data from different sources will lead to a better understanding of the physics of the studied phenomena and may lead to new discoveries. GeospaceLAB is an open source software, which is hosted on GitHub. We welcome everyone in the community to contribute to its future development.  more » « less
Award ID(s):
2033787 1952737
PAR ID:
10386431
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The National Science Foundation Ice Core Facility (NSF-ICF, fka NICL) is in the process of building a new facility including freezer and scientist support space. The facility is being designed to minimize environmental impacts while maximizing ice core curation and science support. In preparation for the new facility, we are updating research equipment and integrating ice core data collection and processing by assigning International Generic Sample Numbers (IGSN) to advance the “FAIR”ness and establish clear provenance of samples, fostering the next generation of linked research data products. The NSF-ICF team, in collaboration with the US ice core science community, has established a metadata schema for the assignment of IGSNs to ice cores and samples. In addition, in close coordination with the US ice core community, we are adding equipment modules that expand traditional sets of physical property, visual stratigraphy, and electrical conductance ice core measurements. One such module is an ice core hyperspectral imaging (HSI) system. Adapted for the cold laboratory settings, the SPECIM SisuSCS HSI system can collect up to 224 bands using a continuous line-scanning mode in the visible and near-infrared (VNIR) 400-1000 nm spectral region. A modular system design allows expansion of spectral properties in the future. The second module is an updated multitrack electrical conductance system. These new data will guide real time optimization of sampling for planned analyses during ice core processing, especially for ice with deformed or highly compressed layering. The aim is to facilitate the collection of robust, long-term, and FAIR data archives for every future ice core section processed at NSF-ICF. The NSF-ICF is fully funded by the National Science Foundation and operated by the U.S. Geological Survey. 
    more » « less
  2. Abstract Atmospheric aerosol and chemistry modules are key elements in Earth system models (ESMs), as they predict air pollutant concentrations and properties that can impact human health, weather, and climate. The current uncertainty in climate projections is partly due to the inaccurate representation of aerosol direct and indirect forcing. Aerosol/chemistry parameterizations used within ESMs and other atmospheric models span large structural and parameter uncertainties that are difficult to assess independently of their host models. Moreover, there is a strong need for a standardized interface between aerosol/chemistry modules and the host model to facilitate portability of aerosol/chemistry parameterizations from one model to another, allowing not only a comparison between different parameterizations within the same modeling framework, but also quantifying the impact of different model frameworks on aerosol/chemistry predictions. To address this need, we have initiated a new community effort to coordinate the construction of a Generalized Aerosol/Chemistry Interface (GIANT) for use across weather and climate models. We aim to organize a series of community workshops and hackathons to design and build GIANT, which will serve as the interface between a range of aerosol/chemistry modules and the physics and dynamics components of atmospheric host models. GIANT will leverage ongoing efforts at the U.S. modeling centers focused on building next-generation ESMs and the international AeroCom initiative to implement this common aerosol/chemistry interface. GIANT will create transformative opportunities for scientists and students to conduct innovative research to better characterize structural and parametric uncertainties in aerosol/chemistry modules, and to develop a common set of aerosol/chemistry parameterizations. 
    more » « less
  3. Abstract Soil microbial communities play critical roles in various ecosystem processes, but studies at a large spatial and temporal scale have been challenging due to the difficulty in finding the relevant samples in available data sets as well as the lack of standardization in sample collection and processing. The National Ecological Observatory Network (NEON) has been collecting soil microbial community data multiple times per year for 47 terrestrial sites in 20 eco‐climatic domains, producing one of the most extensive standardized sampling efforts for soil microbial biodiversity to date. Here, we introduce the neonMicrobe R package—a suite of downloading, preprocessing, data set assembly, and sensitivity analysis tools for NEON’s newly published 16S and ITS amplicon sequencing data products which characterize soil bacterial and fungal communities, respectively. neonMicrobe is designed to make these data more accessible to ecologists without assuming prior experience with bioinformatic pipelines. We describe quality control steps used to remove quality‐flagged samples, report on sensitivity analyses used to determine appropriate quality filtering parameters for the DADA2 workflow, and demonstrate the immediate usability of the output data by conducting standard analyses of soil microbial diversity. The sequence abundance tables produced byneonMicrobecan be linked to NEON’s other data products (e.g., soil physical and chemical properties, plant community composition) and soil subsamples archived in the NEON Biorepository. We provide recommendations for incorporatingneonMicrobeinto reproducible scientific workflows, discuss technical considerations for large‐scale amplicon sequence analysis, and outline future directions for NEON‐enabled microbial ecology. In particular, we believe that NEON marker gene sequence data will allow researchers to answer outstanding questions about the spatial and temporal dynamics of soil microbial communities while explicitly accounting for scale dependence. We expect that the data produced by NEON and theneonMicrobeR package will act as a valuable ecological baseline to inform and contextualize future experimental and modeling endeavors. 
    more » « less
  4. Abstract The National Ecological Observatory Network (NEON) provides over 180 distinct data products from 81 sites (47 terrestrial and 34 freshwater aquatic sites) within the United States and Puerto Rico. These data products include both field and remote sensing data collected using standardized protocols and sampling schema, with centralized quality assurance and quality control (QA/QC) provided by NEON staff. Such breadth of data creates opportunities for the research community to extend basic and applied research while also extending the impact and reach of NEON data through the creation of derived data products—higher level data products derived by the user community from NEON data. Derived data products are curated, documented, reproducibly‐generated datasets created by applying various processing steps to one or more lower level data products—including interpolation, extrapolation, integration, statistical analysis, modeling, or transformations. Derived data products directly benefit the research community and increase the impact of NEON data by broadening the size and diversity of the user base, decreasing the time and effort needed for working with NEON data, providing primary research foci through the development via the derivation process, and helping users address multidisciplinary questions. Creating derived data products also promotes personal career advancement to those involved through publications, citations, and future grant proposals. However, the creation of derived data products is a nontrivial task. Here we provide an overview of the process of creating derived data products while outlining the advantages, challenges, and major considerations. 
    more » « less
  5. McHenry, K; Schreiber, L (Ed.)
    The paleogeosciences are becoming more and more interdisciplinary, and studies increasingly rely on large collections of data derived from multiple data repositories. Integrating diverse datasets from multiple sources into complex workflows increases the challenge of creating reproducible and open science, as data formats and tools are often noninteroperable, requiring manual manipulation of data into standardized formats, resulting in a disconnect in data provenance and confounding reproducibility. Here we present a notebook that demonstrates how the Linked PaleoData (LiPD) framework is used as an interchange format to allow data from multiple data sources to be integrated in a complex workflow using emerging packages in R for geochronological uncertainty quantification and abrupt change detection. Specifically, in this notebook, we use the neotoma2 and lipdR packages to access paleoecological data from the Neotoma Database, and paleoclimate data from compilations hosted on Lipdverse. Age uncertainties for datasets from both sources are then quantified using the geoChronR package, and those data, and their associated age uncertainties, are then investigated for abrupt changes using the actR package, with accompanying visualizations. The result is an integrated, reproducible workflow in R that demonstrates how this complex series of multisource data integration, analysis and visualization can be integrated into an efficient, open scientific narrative. 
    more » « less