skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite element approximation of steady flows of colloidal solutions
We consider the mathematical analysis and numerical approximation of a system of nonlinear partial differential equations that arises in models that have relevance to steady isochoric flows of colloidal suspensions. The symmetric velocity gradient is assumed to be a monotone nonlinear function of the deviatoric part of the Cauchy stress tensor. We prove the existence of a weak solution to the problem, and under the additional assumption that the nonlinearity involved in the constitutive relation is Lipschitz continuous we also prove uniqueness of the weak solution. We then construct mixed finite element approximations of the system using both conforming and nonconforming finite element spaces. For both of these we prove the convergence of the method to the unique weak solution of the problem, and in the case of the conforming method we provide a bound on the error between the analytical solution and its finite element approximation in terms of the best approximation error from the finite element spaces. We propose first a Lions–Mercier type iterative method and next a classical fixed-point algorithm to solve the finite-dimensional problems resulting from the finite element discretisation of the system of nonlinear partial differential equations under consideration and present numerical experiments that illustrate the practical performance of the proposed numerical method.  more » « less
Award ID(s):
1817691
PAR ID:
10386626
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
55
Issue:
5
ISSN:
0764-583X
Page Range / eLocation ID:
1963 to 2011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose and analyze a two-scale finite element method for the Isaacs equation. The fine scale is given by the mesh size h whereas the coarse scale ε is dictated by an integro-differential approximation of the partial differential equation. We show that the method satisfies the discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak operator consistency of the finite element method, allows us to establish convergence of the numerical solution to the viscosity solution as ε , h → 0, and ε  ≳ ( h |log h |) 1/2 . In addition, using a discrete Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness assumptions on the exact solution. 
    more » « less
  2. Finite element methods for electromagnetic problems modeled by Maxwell-type equations are highly sensitive to the conformity of approximation spaces, and non-conforming methods may cause loss of convergence. This fact leads to an essential obstacle for almost all the interface-unfitted mesh methods in the literature regarding the application to electromagnetic interface problems, as they are based on non-conforming spaces. In this work, a novel immersed virtual element method for solving a three-dimensional (3D) H(curl) interface problem is developed, and the motivation is to combine the conformity of virtual element spaces and robust approximation capabilities of immersed finite element spaces. The proposed method is able to achieve optimal convergence. To develop a systematic framework, the [Formula: see text], H(curl) and H(div) interface problems and their corresponding problem-orientated immersed virtual element spaces are considered all together. In addition, the de Rham complex will be established based on which the Hiptmair–Xu (HX) preconditioner can be used to develop a fast solver for the H(curl) interface problem. 
    more » « less
  3. Abstract In this article, we consider a system of two coupled nonlinear diffusion–reaction partial differential equations (PDEs) which model the growth of biofilm and consumption of the nutrient. At the scale of interest the biofilm density is subject to a pointwise constraint, thus the biofilm PDE is framed as a parabolic variational inequality. We derive rigorous error estimates for a finite element approximation to the coupled nonlinear system and confirm experimentally that the numerical approximation converges at the predicted rate. We also show simulations in which we track the free boundary in the domains which resemble the pore scale geometry and in which we test the different modeling assumptions. 
    more » « less
  4. Abstract Finite element methods developed for unfitted meshes have been widely applied to various interface problems. However, many of them resort to non-conforming spaces for approximation, which is a critical obstacle for the extension to $$\textbf{H}(\text{curl})$$ equations. This essential issue stems from the underlying Sobolev space $$\textbf{H}^s(\text{curl};\,\Omega)$$ , and even the widely used penalty methodology may not yield the optimal convergence rate. One promising approach to circumvent this issue is to use a conforming test function space, which motivates us to develop a Petrov–Galerkin immersed finite element (PG-IFE) method for $$\textbf{H}(\text{curl})$$ -elliptic interface problems. We establish the Nédélec-type IFE spaces and develop some important properties including their edge degrees of freedom, an exact sequence relating to the $H^1$ IFE space and optimal approximation capabilities. We analyse the inf-sup condition under certain assumptions and show the optimal convergence rate, which is also validated by numerical experiments. 
    more » « less
  5. The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion.The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain.The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method. 
    more » « less