Finite element methods for electromagnetic problems modeled by Maxwell-type equations are highly sensitive to the conformity of approximation spaces, and non-conforming methods may cause loss of convergence. This fact leads to an essential obstacle for almost all the interface-unfitted mesh methods in the literature regarding the application to electromagnetic interface problems, as they are based on non-conforming spaces. In this work, a novel immersed virtual element method for solving a three-dimensional (3D) H(curl) interface problem is developed, and the motivation is to combine the conformity of virtual element spaces and robust approximation capabilities of immersed finite element spaces. The proposed method is able to achieve optimal convergence. To develop a systematic framework, the [Formula: see text], H(curl) and H(div) interface problems and their corresponding problem-orientated immersed virtual element spaces are considered all together. In addition, the de Rham complex will be established based on which the Hiptmair–Xu (HX) preconditioner can be used to develop a fast solver for the H(curl) interface problem.
more »
« less
Solving two-dimensional H(curl)-elliptic interface systems with optimal convergence on unfitted meshes
Abstract Finite element methods developed for unfitted meshes have been widely applied to various interface problems. However, many of them resort to non-conforming spaces for approximation, which is a critical obstacle for the extension to $$\textbf{H}(\text{curl})$$ equations. This essential issue stems from the underlying Sobolev space $$\textbf{H}^s(\text{curl};\,\Omega)$$ , and even the widely used penalty methodology may not yield the optimal convergence rate. One promising approach to circumvent this issue is to use a conforming test function space, which motivates us to develop a Petrov–Galerkin immersed finite element (PG-IFE) method for $$\textbf{H}(\text{curl})$$ -elliptic interface problems. We establish the Nédélec-type IFE spaces and develop some important properties including their edge degrees of freedom, an exact sequence relating to the $H^1$ IFE space and optimal approximation capabilities. We analyse the inf-sup condition under certain assumptions and show the optimal convergence rate, which is also validated by numerical experiments.
more »
« less
- Award ID(s):
- 2012465
- PAR ID:
- 10423072
- Publisher / Repository:
- European Journal of Applied Mathematics
- Date Published:
- Journal Name:
- European Journal of Applied Mathematics
- ISSN:
- 0956-7925
- Page Range / eLocation ID:
- 1 to 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It has been extensively studied in the literature that solving Maxwell equations is very sensitive to mesh structures, space conformity and solution regularity. Roughly speaking, for almost all the methods in the literature, optimal convergence for low-regularity solutions heavily relies on conforming spaces and highly regular simplicial meshes. This can be a significant limitation for many popular methods based on broken spaces and non-conforming or polytopal meshes often used for inhomogeneous media, as the discontinuity of electromagnetic parameters can lead to quite low regularity of solutions near media interfaces. This very issue can be potentially worsened by geometric singularities, making those methods particularly challenging to apply. In this paper, we present a lowest-order virtual element method for solving an indefinite time-harmonic Maxwell equation in 2D inhomogeneous media with quite arbitrary polytopal meshes, and the media interface is allowed to have geometric singularity to cause low regularity. We employ the “virtual mesh” technique originally invented in [S. Cao, L. Chen and R. Guo, A virtual finite element method for two-dimensional Maxwell interface problems with a background unfitted mesh, Math. Models Methods Appl. Sci. 31 (2021) 2907–2936] for error analysis. This work admits three key novelties: (i) the proposed method is theoretically guaranteed to achieve robust optimal convergence for solutions with merely [Formula: see text] regularity, [Formula: see text]; (ii) the polytopal element shape can be highly anisotropic and shrinking, and an explicit formula is established to describe the relationship between the shape regularity and solution regularity; (iii) we show that the stabilization term is needed to produce optimal convergent solutions for indefinite problems. Extensive numerical experiments will be given to demonstrate the effectiveness of the proposed method.more » « less
-
Abstract The classical serendipity and mixed finite element spaces suffer from poor approximation on nondegenerate, convex quadrilaterals. In this paper, we develop families of direct serendipity and direct mixed finite element spaces, which achieve optimal approximation properties and have minimal local dimension. The set of local shape functions for either the serendipity or mixed elements contains the full set of scalar or vector polynomials of degree r , respectively, defined directly on each element (i.e., not mapped from a reference element). Because there are not enough degrees of freedom for global $$H^1$$ H 1 or $$H(\text {div})$$ H ( div ) conformity, exactly two supplemental shape functions must be added to each element when $$r\ge 2$$ r ≥ 2 , and only one when $$r=1$$ r = 1 . The specific choice of supplemental functions gives rise to different families of direct elements. These new spaces are related through a de Rham complex. For index $$r\ge 1$$ r ≥ 1 , the new families of serendipity spaces $${\mathscr {DS}}_{r+1}$$ DS r + 1 are the precursors under the curl operator of our direct mixed finite element spaces, which can be constructed to have reduced or full $$H(\text {div})$$ H ( div ) approximation properties. One choice of direct serendipity supplements gives the precursor of the recently introduced Arbogast–Correa spaces (SIAM J Numer Anal 54:3332–3356, 2016. 10.1137/15M1013705 ). Other fully direct serendipity supplements can be defined without the use of mappings from reference elements, and these give rise in turn to fully direct mixed spaces. Our development is constructive, so we are able to give global bases for our spaces. Numerical results are presented to illustrate their properties.more » « less
-
We construct several smooth finite element spaces defined on three-dimensional Worsey–Farin splits. In particular, we construct C 1 C^1 , H 1 ( curl ) H^1(\operatorname {curl}) , and H 1 H^1 -conforming finite element spaces and show the discrete spaces satisfy local exactness properties. A feature of the spaces is their low polynomial degree and lack of extrinsic supersmoothness at subsimplices of the mesh. In the lowest order case, the last two spaces in the sequence consist of piecewise linear and piecewise constant spaces, and are suitable for the discretization of the (Navier-)Stokes equation.more » « less
-
This paper addresses the challenge of constructing finite element curl div complexes in three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite element curl div complexes. The spaces constructed are applied to discretize the quad curl problem, demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed, demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods.more » « less
An official website of the United States government

