skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation
Abstract Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast‐flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land‐use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next‐generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species’ survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life‐history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.  more » « less
Award ID(s):
1906494
PAR ID:
10386843
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolutionary Applications
Volume:
14
Issue:
6
ISSN:
1752-4571
Page Range / eLocation ID:
p. 1485-1496
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae ), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region. 
    more » « less
  2. null (Ed.)
    Mounting evidence suggests that microbes found in the pollen provisions of wild and solitary bees are important drivers of larval development. As these microbes are also known to be transmitted via the environment, most likely from flowers, the diet breadth of a bee may affect the diversity and identity of the microbes that occur in its pollen provisions. Here, we tested the hypothesis that, due to the importance of floral transmission of microbes, diet breadth affects pollen provision microbial community composition. We collected pollen provisions at four sites from the polylectic bee Osmia lignaria and the oligolectic bee Osmia ribifloris. We used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacteria found in these provisions. We found minimal overlap in the specific bacterial variants in pollen provisions across the host species, even when the bees were constrained to foraging from the same flowers in cages at one site. Similarly, there was minimal overlap in the specific bacterial variants across sites, even within the same host species. Together, these findings highlight the importance of environmental transmission and host specific sorting influenced by diet breadth for microbes found in pollen provisions. Future studies addressing the functional consequences of this filtering, along with tests for differences between more species of oligoletic and polylectic bees will provide rich insights into the microbial ecology of solitary bees. 
    more » « less
  3. In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halts and the worker bees live several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having larger fat bodies, high expression levels of vitellogenin (a longevity, nutrition, and immune-related gene), and larger provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory suggests is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in the fall (i.e., lower brood area). We examine that theory here by assessing nurse bee physiology in both the summer and fall, in colonies with varying levels of brood. We find that season is a better predictor of nurse bee physiology than brood area. This finding suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival. 
    more » « less
  4. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less
  5. Abstract BackgroundHoney bees are not only essential for pollination services, but are also economically important as a source of hive products (e.g., honey, royal jelly, pollen, wax, and propolis) that are used as foods, cosmetics, and alternative medicines. Royal jelly is a popular honey bee product with multiple potential medicinal properties. To boost royal jelly production, a long-term genetic selection program of Italian honey bees (ITBs) in China has been performed, resulting in honey bee stocks (here referred to as RJBs) that produce an order of magnitude more royal jelly than ITBs. Although multiple studies have investigated the molecular basis of increased royal jelly yields, one factor that has not been considered is the role of honey bee-associated gut microbes. ResultsBased on the behavioral, morphological, physiological, and neurological differences between RJBs and ITBs, we predicted that the gut microbiome composition of RJBs bees would differ from ITBs. To test this hypothesis, we investigated the bacterial composition of RJB and ITB workers from an urban location and RJBs from a rural location in China. Based on 16S rRNA gene profiling, we did not find any evidence that RJBs possess a unique bacterial gut community when compared to ITBs. However, we observed differences between honey bees from the urban versus rural sites. ConclusionsOur results suggest that the environmental factors rather than stock differences are more important in shaping the bacterial composition in honey bee guts. Further studies are needed to investigate if the observed differences in relative abundance of taxa between the urban and rural bees correspond to distinct functional capabilities that impact honey bee health. Because the lifestyle, diet, and other environmental variables are different in rural and urban areas, controlled studies are needed to determine which of these factors are responsible for the observed differences in gut bacterial composition between urban and rural honeybees. 
    more » « less