skip to main content

Title: CO2 and H2O in Plagioclase-Hosted Melt Inclusions from Ocean-Ridge Lavas: An Indicator of Crystallization in the Lower Oceanic Crust
Interpretation of erupted products we observe on the seafloor requires that we understand the petrogenesis of melts in the oceanic crust and where crystallization initially takes place. Our work focuses on estimating depth of crystallization of the plagioclase megacrysts using CO2 and H2O concentrations from plagioclase ultraphyric basalts (PUBs). Samples were analyzed from the Lucky Strike segment on the Mid-Atlantic Ridge and from three locations on the Juan de Fuca Ridge (West Valley, Endeavor Segment, and Axial Segment). Melt inclusions were re-homogenized to remove the effects of post-entrapment crystallization. The CO2 in the vapor bubbles present in the melt inclusions were analyzed at Virginia Tech using Raman spectroscopy, and associated glassy melt inclusions were analyzed at WHOI using the ion microprobe for CO2 and H2O. Vapor-saturation pressures calculated from these volatiles stored in melt inclusions and vapor bubbles range from 359-3994 bars, corresponding to depths of 1.0-11.4 km below the sea floor. The proportion of CO2 partitioned in the bubbles range from 11-98%. In summary, about 14% of the melt inclusions from Lucky Strike record crystallization depths of 3-4 km, consistent with the depth of the seismically imaged melt lens, whereas ~55% of melt inclusions crystallized at depths >4 km more » with a maximum at 9.8 km. These data are similar to depths of formation determined through olivine-hosted melt inclusions from the same segment (Wanless et al., 2015), although a greater portion of plagioclase-hosted melt inclusions record crystallization below the melt lens. At the Juan de Fuca ridge, ~24% of the melt inclusions record crystallization depths of 2-3 km, consistent with a seismically imaged mid-crustal magma chamber at the Endeavor Segment, while an additional ~62% crystallize at depths >3 km with a maximum at 11.4 km. This suggests that while crystallization can be focused within the melt lenses and magma chambers at these ridge localities, a significant and greater proportion of the megacrysts were sampled from the lower crust or upper mantle. « less
Authors:
; ; ;
Award ID(s):
1634206
Publication Date:
NSF-PAR ID:
10191142
Journal Name:
American Geophysical Union, Fall Meeting 2019, abstract #V13C-0172
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Bishop Tuff (BT), erupted from the Long Valley caldera in California, displays two types of geochemical gradients with temperature: one is related to magma mixing, whereas the other is found in the high-SiO2 rhyolite portion of the Bishop Tuff and is characterized by twofold or lower concentration variations in minor and trace elements that are strongly correlated with temperature. It is proposed that the latter zonation, which preceded phenocryst growth, developed as a result of mineral–melt partitioning between interstitial melt and surrounding crystals in a parental mush, from which variable melt fractions were segregated. To test this hypothesis, trends of increasing vs decreasing element concentrations with temperature (as a proxy for melt fraction), obtained from published data on single-clast pumice samples from the high-SiO2 rhyolite portion of the Bishop Tuff, were used to infer their relative degrees of incompatibility vs compatibility between crystals and melt in the parental mush. Relative compatibility values (RCVi) for all elements i, defined as the concentration slope with temperature divided by average concentration, are shown to be linearly correlated with their respective bulk partition coefficients (bulk Di). Mineral–melt partition coefficients from the literature were used to constrain the average stoichiometry of the crystallization/meltingmore »reaction in the parental mush: 32 % quartz + 34 % plagioclase + 31 % K-feldspar + 1·60 % biotite + 0·42 % titanomagnetite + 0·34 % ilmenite + 0·093 % allanite + 0·024 % zircon + 0·025 % apatite = 100 % liquid. The proportions of tectosilicates in the reaction (i.e. location of eutectic) are consistent with depths of melt segregation of ~400–550 MPa and an activity of H2O of ~0·4–0·6. Temperatures of <770–780 °C are constrained by allanite in the reaction. Evidence that a fluid phase was present in the parental mush is seen in the decreasing versus increasing H2O and CO2 contents with temperature in the segregated interstitial melt that formed the high-SiO2 rhyolite portion of the Bishop Tuff. The presence of an excess fluid phase, which strongly partitions CO2 relative to the melt, is required to explain the compatible behavior of CO2, whereas the fluid abundance must have been low to explain the incompatible behavior of H2O. Calculated degassing paths for interstitial melts, which segregated from the parental mush and ascended to shallower depths to grow phenocrysts, match published volatile analyses in quartz-hosted melt inclusions and constrain fluid abundances in the mush to be ≤1 wt%. The source of volatiles in the parental mush, irrespective of whether it formed by crystallization or partial melting, must have been primarily from associated basalts, as granitoid crust is too volatile poor. Approximately twice as much basalt as rhyolite is needed to provide the requisite volatiles. The determination of bulk Di for several elements gives the bulk composition of the parental leucogranitic mush and shows that it is distinct from Mesozoic Sierran arc granitoids, as expected. Collectively, the results from this study provide new constraints for models of the complex, multi-stage processes throughout the Plio-Quaternary, involving both mantle-derived basalt and pre-existing crust, that led to the origin of the parental body to the Bishop Tuff.« less
  2. Bulk-rock data are commonly used in geochemical studies as a proxy for melt compositions in order to understand the evolution of crustal melts. However, processes of crystal accumulation and melt migration out of deep-crustal, crystal-rich mush zones to shallower storage regions raise questions about how faithfully bulk-rock compositions in plutons approximate melt compositions. This problem is particularly acute in the lower crust of arcs, where melt reservoirs are subject to periodic melt extraction that leaves behind a cumulate residue. Here, we examine bulk-rock data from the perspective of high-Sr/Y plutonic rocks in the lower crust of a well-exposed Early Cretaceous cordilleran-arc system in Fiordland, New Zealand. We test the validity of using high-Sr/Y bulk-rock compositions as proxies for melts by comparing bulk-rock compositions to melts modeled from >100 major- and trace-element analyses of 23 magmatic clinopyroxene grains from the same samples. The sampling locations of the igneous clinopyroxenes and encompassing bulk rocks are distributed across ~550 km2 of exhumed lower crust and are representative of Mesozoic lower-crustal arc rocks in the Median batholith. We confirm that bulk-rock data have characteristics of high-Sr/Y plutons (Sr/Y >50, Na2O >3.5 wt%, Sr >1000 ppm, and Y <20 ppm), features that have been previouslymore »interpreted to indicate the presence of garnet as a residual or fractionating phase. In contrast to bulk rocks, igneous clinopyroxenes have low Sr (<100 ppm), high Y (25–100 ppm), and low molar Mg# [100 × Mg/(Mg + Fe)] values (60–70), which are consistent with derivation from fractionated, low-Sr/Y melts. Chondrite-normalized rare-earth-element patterns and Sm/Yb values in clinopyroxenes also show little to no evidence for involvement of garnet in the source or in differentiation processes. Fe-Mg partitioning relationships indicate that clinopyroxenes are not in equilibrium with their encompassing bulk rocks but could have been in equilibrium with melt compositions determined from chemometry of coexisting igneous hornblendes. Moho-depth calculations based on bulk-rock Sr/Y values also yield Moho depths (average = 69 km) that are inconsistent with Moho depths based on bulk-rock Ce/Y, contact aureole studies, Al-in-horn- blende crystallization pressures, and our modeled clinopyroxene crystallization pressures. These data indicate that most Mesozoic high-Sr/Y bulk rocks in the lower crust of Fiordland are cumulates formed by plagioclase + amphibole + clinopyroxene accumulation and interstitial melt loss from crystal-rich mush zones. Our data do not support widespread fractionation of igneous garnet nor partial melting of a garnet-bearing source in the petrogenesis of these melts. We speculate that melt extraction and the production of voluminous cumulates in the lower crust were aided by unusually high heat flow and high magma addition rates associated with an Early Cretaceous arc flareup. We conclude that bulk-rock compositions are poor proxies for melt compositions in the lower crust of the Median batholith, and geochemical modeling of these high-Sr/Y bulk rocks would overemphasize the role of garnet in their petrogenesis.« less
  3. The Plio-Pleistocene El Laco iron oxide-apatite (IOA) orebodies in northern Chile are some of the most enigmatic mineral deposits on Earth, interpreted to have formed as lava flows or by hydrothermal replacement, two radically different processes. Field observations provide some support for both processes, but ultimately fail to explain all observations. Previously proposed genetic models based on observations and study of outcrop samples include (1) magnetite crystallization from an erupting immiscible Fe- and P-rich (Si-poor) melt and (2) metasomatic replacement of andesitic lava flows by a hypogene hydrothermal fluid. A more recent investigation of outcrop and drill core samples at El Laco generated data that were used to develop a new genetic model that invokes shallow emplacement and surface venting of a magnetite-bearing magmatic-hydrothermal fluid suspension. This fluid, with rheological properties similar to basaltic lava, would have been mobilized by decompression- induced collapse of the volcanic edifice. In this study, we report oxygen, including 17O, hydrogen, and iron stable isotope ratios in magnetite and bulk iron oxide (magnetite with minor secondary hematite and minor goethite) from five of seven orebodies around the El Laco volcano, excluding San Vicente Bajo and the minor Laquito deposits. Calculated values of δ18O, Δ17O, δD,more »and δ56Fe fingerprint the source of the ore-forming fluid(s): Δ17Osample = δ17Osample – δ18Osample * 0.5305. Magnetite and bulk iron oxide (magnetite variably altered to goethite and hematite) from Laco Sur, Cristales Grandes, and San Vicente Alto yield δ18O values that range from 4.3 to 4.5‰ (n = 5), 3.0 to 3.9‰ (n = 5), and –8.5 to –0.5‰ (n = 5), respectively. Magnetite samples from Rodados Negros are the least altered samples and were also analyzed for 17O as well as conventional 16O and 18O, yielding calculated δ18O values that range from 2.6 to 3.8‰ (n = 9) and Δ17O values that range from –0.13 to –0.07‰ (n = 5). Bulk iron oxide from Laco Norte yielded δ18O values that range from –10.2 to +4.5‰ (avg = 0.8‰, n = 18). The δ2H values of magnetite and bulk iron oxide from all five orebodies range from –192.8 to –79.9‰ (n = 28); hydrogen is present in fluid inclusions in magnetite and iron oxide, and in minor goethite. Values of δ56Fe for magnetite and bulk iron oxide from all five orebodies range from 0.04 to 0.70‰ (avg = 0.29‰, σ = 0.15‰, n = 26). The iron and oxygen isotope data are consistent with a silicate magma source for iron and oxygen in magnetite from all sampled El Laco orebodies. Oxygen (δ18O Δ +4.4 to –10.2‰) and hydrogen (δ 2H ≃ –79.9 to –192.8‰) stable isotope data for bulk iron oxide samples that contain minor goethite from Laco Norte and San Vicente Alto reveal that magnetite has been variably altered to meteoric values, consistent with goethite in equilibrium with local δ18O and δ2H meteoric values of ≃ –15.4 and –211‰, respectively. The H2O contents of iron oxide samples from Laco Norte and San Vicente Alto systematically increase with increasing abundance of goethite and decreasing values of δ18O and δ2H. The values of δ2H (≃ –88 to –140‰) and δ18O (3.0–4.5‰) for magnetite samples from Cristales Grandes, Laco Sur, and Rodados Negros are consistent with growth of magnetite from a degassing silicate melt and/or a boiling magmatic-hydrothermal fluid; the latter is also consistent with δ18O values for quartz, and salinities and homogenization temperatures for fluid inclusions trapped in apatite and clinopyroxene coeval with magnetite. The sum of the data unequivocally fingerprint a silicate magma as the source of the ore fluids responsible for mineralization at El Laco and are consistent with a model that explains mineralization as the synergistic result of common magmatic and magmatic-hydrothermal processes during the evolution of a caldera-related explosive volcanic system.« less
  4. Bubble and crystal textures evolve during magma ascent, altering properties that control ascent such as permeability and viscosity. Eruption style results from feedbacks between ascent, bubble nucleation and growth, microlite crystallization, and gas loss, all processes recorded in pyroclasts. We show that pyroclasts of the mafic Curacautín ignimbrite of Llaima volcano, Chile, record a history of repeated autobrecciation, fusing, and crystallization. We identified pyroclasts with domains of heterogeneous vesicle textures in sharp contact with one another that are overprinted by extensive microlite crystallization. Broken crystals with long axes (l) >10 μm record fragmentation events during the eruption. A second population of unbroken microlites with l ≤10 μm overprint sutures between fused domains, suggesting the highly crystalline groundmass formed at shallow depths after autobrecciation and fusing. Nearly all pyroclasts contain plutonic and ancestral Llaima lithics as inclusions, implying that fusing occurs from a few kilometers depth to as shallow as the surface. We propose that Curacautín ignimbrite magma autobrecciated during ascent and proto-pyroclasts remained melt rich enough to fuse together. Lithics from the conduit margins were entrained into the proto-pyroclasts before fusing. Autobrecciation broke existing phenocrysts and microlites; rapid post-fusing crystallization then generated the highly crystalline groundmass. This proposed conduit processmore »has implications for interpreting the products of mafic explosive eruptions.« less
  5. Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap withmore »whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system.« less