skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure and evolution of the squamate major histocompatibility complex as revealed by two Anolis lizard genomes
The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole ( Anolis carolinensis ) and brown anole ( A. sagrei ), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2β gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1 , many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC.  more » « less
Award ID(s):
1812310
PAR ID:
10386919
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Genetics
Volume:
13
ISSN:
1664-8021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In briefModes of reproduction across limbed vertebrates are diverse, but the molecular mechanisms required for the development and maintenance of reproductive tract tissue architecture are poorly understood. This paper describes gene expression changes across the regions of the reproductive tract of the adult female brown anole,Anolis sagrei. AbstractThe morphological diversity and functional role of the organs of the female reproductive system across tetrapods (limbed vertebrates) are relatively poorly understood. Although some features are morphologically similar, species-specific modification makes comparisons between species and inference about evolutionary origins challenging. In combination with the study of morphological changes, studying differences in gene expression in the adult reproductive system in diverse species can clarify the function of each organ. Here, we use the brown anole,Anolis sagrei, to study gene expression differences within the reproductive tract of the adult female. We generated gene expression profiles of four biological replicates of the three regions of the female reproductive tract, the infundibulum, glandular uterus, and nonglandular uterus, by RNA-sequencing. We aligned reads to the recently publishedA. sagreigenome and identified significantly differentially expressed genes between the regions using DESeq2. Each organ expressed approximately 14,600 genes, and comparison of gene expression profiles between organs revealed between 367 and 883 differentially expressed genes. We identify shared and region-specific transcriptional signatures for the three regions and compare gene expression in the brown anole reproductive tract to known gene expression patterns in other tetrapods. We find that genes in theHoxcluster have an anterior–posterior, collinear expression pattern as has been described in mammals. We also define a secretome for the glandular uterus. These data provide fundamental information for functional studies of the reproductive tract organs in the brown anole and an important phylogenetic anchor for comparative studies of the evolution of the female reproductive tract. 
    more » « less
  2. Abstract The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards. 
    more » « less
  3. Determining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pres- sures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictabil- ity of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme–associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and hab- itat use, whereas genetic change was unpredictable and not measur- ably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information. 
    more » « less
  4. Amniote skulls are diverse in shape and skeletal composition, which is the basis of much adaptive diversification within this clade. Major differences in skull shape are established early in development, at a critical developmental interval spanning the initial outgrowth and fusion of the facial processes. In birds, this is orchestrated by domains of Shh and Fgf8 expression, known as the frontonasal ectodermal zone (FEZ). It is unclear whether this model of facial development applies to species with diverse facial skeletons, especially species possessing a skull morphology representative of early amniotes. By investigating facial morphogenesis in the lizard, Anolis sagrei, we show that reptilian skull development is driven by the same genes as mammals and birds, but the manner in which those genes regulate facial development is clade-specific. These genes are not expressed in the frontal-nasal prominence, the region of the avian FEZ. Downregulating Shh and Fgf8 signaling disrupts normal facial development, but in pathway-specific ways. Our results demonstrate that early facial morphogenesis in lizards does not conform to the FEZ model. Lizard skull development may be more representative of the ancestral amniote than other model species with highly derived facial skeletons suggesting that the FEZ may be an avian-specific novelty. 
    more » « less
  5. Blackmon, Heath (Ed.)
    Abstract In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the “genomics age” was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa. 
    more » « less