skip to main content

Title: The Difficulty of Predicting Evolutionary Change in Response to Novel Ecological Interactions: A Field Experiment with Anolis Lizards
Determining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pres- sures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictabil- ity of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme–associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and hab- itat use, whereas genetic change was unpredictable and not measur- ably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Naturalist
Date Published:
Journal Name:
The American Naturalist
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The idea that changing environmental conditions drive adaptive evolution is a pillar of evolutionary ecology. But, the opposite—that adaptive evolution alters ecological processes—has received far less attention yet is critical for eco-evolutionary dynamics. We assessed the ecological impact of divergent values in a key adaptive trait using 16 populations of the brown anole lizard ( Anolis sagrei ). Mirroring natural variation, we established islands with short- or long-limbed lizards at both low and high densities. We then monitored changes in lower trophic levels, finding that on islands with a high density of short-limbed lizards, web-spider densities decreased and plants grew more via an indirect positive effect, likely through an herbivore-mediated trophic cascade. Our experiment provides strong support for evolution-to-ecology connections in nature, likely closing an otherwise well-characterized eco-evolutionary feedback loop. 
    more » « less
  2. Abstract

    Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest thatAnolis sagreiis a candidate for understanding the origins of the CaribbeanAnolisadaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range ofA. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post‐colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor‐poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.

    more » « less
  3. The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole ( Anolis carolinensis ) and brown anole ( A. sagrei ), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2β gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1 , many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC. 
    more » « less
  4. Abstract

    The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards.

    more » « less
  5. Abstract

    Phenotypic variation within populations is influenced by the environment via plasticity and natural selection. How phenotypes respond to the environment can vary among traits, populations and life stages in ways that can influence fitness.

    Plastic responses during early development are particularly important because they can affect components of fitness throughout an individual's life. Consequently, how natural selection shapes developmental plasticity could be influenced by fitness consequences across different life stages. Moreover, spatial variation in selection pressures could generate differences in plastic responses among populations.

    To gain insight into sources of variation in phenotypes and survival, we used a laboratory egg incubation experiment using brown anole lizardsAnolis sagreifrom mainland (ancestral) and island (descendent) populations, combined with a mark–release–recapture experiment in the field. Our study was designed to (a) quantify the effects developmental temperature on embryo development and offspring morphology, (b) assess how developmental temperature influences offspring survival across different life stages and (c) quantify how thermal reaction norms vary among ancestral and descendant populations.

    Developmental temperature influenced offspring morphology, but thermal reaction norms of embryos showed little variation among populations. Developmental temperature influenced offspring survival, but the patterns differed between embryo and hatchling stages; the optimal temperature for embryos was about 5℃ lower than that for hatchlings. High temperatures were thermally stressful to embryos, but they reduced incubation duration and led to early hatching. In turn, earlier hatching increased the probability of survival to adulthood. Moreover, the effect of developmental temperature on hatchling survival was most pronounced for offspring that hatched late in the season.

    The difference in optimal developmental temperatures between life stages may be driven by physiological tolerance for embryos and by ecological factors for hatchlings. Moreover, the fitness consequences of the developmental environment depend on the phenology of hatching. Overall, these results highlight how the developmental environment can differentially affect fitness across life stages and show that temporal thermal heterogeneity can influence survival of embryos, but the consequences on post‐hatching stages may vary at different times of the season.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less