skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Nonconvex Framework for Structured Dynamic Covariance Recovery}
We propose a flexible, yet interpretable model for high-dimensional data with time-varying second-order statistics, motivated and applied to functional neuroimaging data. Our approach implements the neuroscientific hypothesis of discrete cognitive processes by factorizing covariances into sparse spatial and smooth temporal components. Although this factorization results in parsimony and domain interpretability, the resulting estimation problem is nonconvex. We design a two-stage optimization scheme with a tailored spectral initialization, combined with iteratively refined alternating projected gradient descent. We prove a linear convergence rate up to a nontrivial statistical error for the proposed descent scheme and establish sample complexity guarantees for the estimator. Empirical results using simulated data and brain imaging data illustrate that our approach outperforms existing baselines.  more » « less
Award ID(s):
2046795 1934986 1909577
PAR ID:
10387043
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
23
ISSN:
1532-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The topic of training machine learning models by employing multiple gradient-computing workers is attracting great interest recently. Communication efficiency in such distributed learning settings is an important consideration, especially for the case where the needed communications are expensive in terms of power usage. We develop a new approach which is efficient in terms of communication transmissions. In this scheme, only the most informative worker results are transmitted to reduce the total number of transmissions. Our ordered gradient approach provably achieves the same order of convergence rate as gradient descent for nonconvex smooth loss functions while gradient descent always requires more communications. Experiments show significant communication savings compared to the best existing approaches in some cases. 
    more » « less
  2. The convergence behavior of Stochastic Gradient Descent (SGD) crucially depends on the stepsize configuration. When using a constant stepsize, the SGD iterates form a Markov chain, enjoying fast convergence during the initial transient phase. However, when reaching stationarity, the iterates oscillate around the optimum without making further progress. In this paper, we study the convergence diagnostics for SGD with constant stepsize, aiming to develop an effective dynamic stepsize scheme. We propose a novel coupling-based convergence diagnostic procedure, which monitors the distance of two coupled SGD iterates for stationarity detection. Our diagnostic statistic is simple and is shown to track the transition from transience stationarity theoretically. We conduct extensive numerical experiments and compare our method against various existing approaches. Our proposed coupling-based stepsize scheme is observed to achieve superior performance across a diverse set of convex and non-convex problems. Moreover, our results demonstrate the robustness of our approach to a wide range of hyperparameters. 
    more » « less
  3. Though data augmentation has rapidly emerged as a key tool for optimization in modern machine learning, a clear picture of how augmentation schedules affect optimization and interact with optimization hyperparameters such as learning rate is nascent. In the spirit of classical convex optimization and recent work on implicit bias, the present work analyzes the effect of augmentation on optimization in the simple convex setting of linear regression with MSE loss.We find joint schedules for learning rate and data augmentation scheme under which augmented gradient descent provably converges and characterize the resulting minimum. Our results apply to arbitrary augmentation schemes, revealing complex interactions between learning rates and augmentations even in the convex setting. Our approach interprets augmented (S)GD as a stochastic optimization method for a time-varying sequence of proxy losses. This gives a unified way to analyze learning rate, batch size, and augmentations ranging from additive noise to random projections. From this perspective, our results, which also give rates of convergence, can be viewed as Monro-Robbins type conditions for augmented (S)GD. 
    more » « less
  4. We consider distributed gradient computation, where both data and computation are distributed among m worker machines, t of which can be Byzantine adversaries, and a designated (master) node computes the model/parameter vector for generalized linear models, iteratively, using proximal gradient descent (PGD), of which gradient descent (GD) is a special case. The Byzantine adversaries can (collaboratively) deviate arbitrarily from their gradient computation. To solve this, we propose a method based on data encoding and (real) error correction to combat the adversarial behavior. We can tolerate up to t <= (m−1)/2 corrupt worker nodes, which is 2 information-theoretically optimal. Our method does not assume any probability distribution on the data. We develop a sparse encoding scheme which enables computationally efficient data encoding. We demonstrate a trade-off between the number of adversaries tolerated and the resource requirement (storage and computational complexity). As an example, our scheme incurs a constant overhead (storage and computational complexity) over that required by the distributed PGD algorithm, without adversaries, for t <= m . Our encoding works as efficiently in the streaming data setting as it does in the offline setting, in which all the data is available beforehand. 
    more » « less
  5. Meila, Marina; Zhang, Tong (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks. 
    more » « less