skip to main content


Search for: All records

Award ID contains: 2046795

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Graphs representing complex systems often share a partial underlying structure across domains while retaining individual features. Thus, identifying common structures can shed light on the underlying signal, for instance, when applied to scientific discovery or clinical diagnoses. Furthermore, growing evidence shows that the shared structure across domains boosts the estimation power of graphs, particularly for high‐dimensional data. However, building a joint estimator to extract the common structure may be more complicated than it seems, most often due to data heterogeneity across sources. This manuscript surveys recent work on statistical inference of joint Gaussian graphical models, identifying model structures that fit various data generation processes.

    This article is categorized under:

    Data: Types and Structure > Graph and Network Data

    Statistical Models > Graphical Models

     
    more » « less
  2. Although parallelism has been extensively used in reinforcement learning (RL), the quantitative effects of parallel exploration are not well understood theoretically. We study the benefits of simple parallel exploration for reward-free RL in linear Markov decision processes (MDPs) and two-player zero-sum Markov games (MGs). In contrast to the existing literature, which focuses on approaches that encourage agents to explore a diverse set of policies, we show that using a single policy to guide exploration across all agents is sufficient to obtain an almost-linear speedup in all cases compared to their fully sequential counterpart. Furthermore, we demonstrate that this simple procedure is near-minimax optimal in the reward-free setting for linear MDPs. From a practical perspective, our paper shows that a single policy is sufficient and provably near-optimal for incorporating parallelism during the exploration phase. 
    more » « less
  3. Inverse decision theory (IDT) aims to learn a performance metric for classification by eliciting expert classifications on examples. However, elicitation in practical settings may require many classifications of potentially ambiguous examples. To improve the efficiency of elicitation, we propose the cooperative inverse decision theory (CIDT) framework as a formalization of the performance metric elicitation problem. In cooperative inverse decision theory, the expert and a machine play a game where both are rewarded according to the expert’s performance metric, but the machine does not initially know what this function is. We show that optimal policies in this framework produce active learning that leads to an exponential improvement in sample complexity over previous work. One of our key findings is that a broad class of sub-optimal experts can be represented as having uncertain preferences. We use this finding to show such experts naturally fit into our proposed framework extending inverse decision theory to efficiently deal with decision data that is sub-optimal due to noise, conflicting experts, or systematic error 
    more » « less
  4. Collaborative inference leverages diverse features provided by different agents (e.g., sensors) for more accurate inference. A common setup is where each agent sends its embedded features instead of the raw data to the Fusion Center (FC) for joint prediction. In this setting, we consider the inference-time attacks when a small fraction of agents are compromised. The compromised agent either does not send embedded features to the FC, or sends arbitrarily embedded features. To address this, we propose a certifiably robust COllaborative inference framework via feature PURification (CoPur), by leveraging the block-sparse nature of adversarial perturbations on the feature vector, as well as exploring the underlying redundancy across the embedded features (by assuming the overall features lie on an underlying lower dimensional manifold). We theoretically show that the proposed feature purification method can robustly recover the true feature vector, despite adversarial corruptions and/or incomplete observations. We also propose and test an untargeted distributed feature-flipping attack, which is agnostic to the model, training data, label, as well as the features held by other agents, and is shown to be effective in attacking state-of-the-art defenses. Experiments on ExtraSensory and NUS-WIDE datasets show that CoPur significantly outperforms existing defenses in terms of robustness against targeted and untargeted adversarial attacks. 
    more » « less
  5. Distributed machine learning is primarily motivated by the promise of increased computation power for accelerating training and mitigating privacy concerns. Unlike machine learning on a single device, distributed machine learning requires collaboration and communication among the devices. This creates several new challenges: (1) the heavy communication overhead can be a bottleneck that slows down the training, and (2) the unreliable communication and weaker control over the remote entities make the distributed system vulnerable to systematic failures and malicious attacks. This paper presents a variant of stochastic gradient descent (SGD) with improved communication efficiency and security in distributed environments. Our contributions include (1) a new technique called error reset to adapt both infrequent synchronization and message compression for communication reduction in both synchronous and asynchronous training, (2) new score-based approaches for validating the updates, and (3) integration with both error reset and score-based validation. The proposed system provides communication reduction, both synchronous and asynchronous training, Byzantine tolerance, and local privacy preservation. We evaluate our techniques both theoretically and empirically. 
    more » « less
  6. Cussens, James ; Zhang, Kun (Ed.)
    Metric elicitation is a recent framework for eliciting classification performance metrics that best reflect implicit user preferences based on the task and context. However, available elicitation strategies have been limited to linear (or quasi-linear) functions of predictive rates, which can be practically restrictive for many applications including fairness. This paper develops a strategy for eliciting more flexible multiclass metrics defined by quadratic functions of rates, designed to reflect human preferences better. We show its application in eliciting quadratic violation-based group-fair metrics. Our strategy requires only relative preference feedback, is robust to noise, and achieves near-optimal query complexity. We further extend this strategy to eliciting polynomial metrics – thus broadening the use cases for metric elicitation. 
    more » « less