skip to main content


Search for: All records

Award ID contains: 1909577

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Distributed machine learning is primarily motivated by the promise of increased computation power for accelerating training and mitigating privacy concerns. Unlike machine learning on a single device, distributed machine learning requires collaboration and communication among the devices. This creates several new challenges: (1) the heavy communication overhead can be a bottleneck that slows down the training, and (2) the unreliable communication and weaker control over the remote entities make the distributed system vulnerable to systematic failures and malicious attacks. This paper presents a variant of stochastic gradient descent (SGD) with improved communication efficiency and security in distributed environments. Our contributions include (1) a new technique called error reset to adapt both infrequent synchronization and message compression for communication reduction in both synchronous and asynchronous training, (2) new score-based approaches for validating the updates, and (3) integration with both error reset and score-based validation. The proposed system provides communication reduction, both synchronous and asynchronous training, Byzantine tolerance, and local privacy preservation. We evaluate our techniques both theoretically and empirically. 
    more » « less
  2. We propose a flexible, yet interpretable model for high-dimensional data with time-varying second-order statistics, motivated and applied to functional neuroimaging data. Our approach implements the neuroscientific hypothesis of discrete cognitive processes by factorizing covariances into sparse spatial and smooth temporal components. Although this factorization results in parsimony and domain interpretability, the resulting estimation problem is nonconvex. We design a two-stage optimization scheme with a tailored spectral initialization, combined with iteratively refined alternating projected gradient descent. We prove a linear convergence rate up to a nontrivial statistical error for the proposed descent scheme and establish sample complexity guarantees for the estimator. Empirical results using simulated data and brain imaging data illustrate that our approach outperforms existing baselines. 
    more » « less
  3. Cussens, James ; Zhang, Kun (Ed.)
    Metric elicitation is a recent framework for eliciting classification performance metrics that best reflect implicit user preferences based on the task and context. However, available elicitation strategies have been limited to linear (or quasi-linear) functions of predictive rates, which can be practically restrictive for many applications including fairness. This paper develops a strategy for eliciting more flexible multiclass metrics defined by quadratic functions of rates, designed to reflect human preferences better. We show its application in eliciting quadratic violation-based group-fair metrics. Our strategy requires only relative preference feedback, is robust to noise, and achieves near-optimal query complexity. We further extend this strategy to eliciting polynomial metrics – thus broadening the use cases for metric elicitation. 
    more » « less
  4. Deep generative models have enabled the automated synthesis of high-quality data for diverse applications. However, the most effective generative models are specialized to data from a single domain (e.g., images or text). Real-world applications such as healthcare require multi-modal data from multiple domains (e.g., both images and corresponding text), which are difficult to acquire due to limited availability and privacy concerns and are much harder to synthesize. To tackle this joint synthesis challenge, we propose an End-to-end MultImodal X-ray genERative model (EMIXER) for jointly synthesizing x-ray images and corresponding free-text reports, all conditional on diagnosis labels. EMIXER is an conditional generative adversarial model by 1) generating an image based on a label, 2) encoding the image to a hidden embedding, 3) producing the corresponding text via a hierarchical decoder from the image embedding, and 4) a joint discriminator for assessing both the image and the corresponding text. EMIXER also enables self-supervision to leverage vast amount of unlabeled data. Extensive experiments with real X-ray reports data illustrate how data augmentation using synthesized multimodal samples can improve the performance of a variety of supervised tasks including COVID-19 X-ray classification with very limited samples. The quality of generated images and reports are also confirmed by radiologists. We quantitatively show that EMIXER generated synthetic datasets can augment X-ray image classification, report generation models to achieve 5.94% and 6.9% improvement on models trained only on real data samples. Taken together, our results highlight the promise of state of generative models to advance clinical machine learning. 
    more » « less
  5. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    Machine learning (ML) robustness and domain generalization are fundamentally correlated: they essentially concern data distribution shifts under adversarial and natural settings, respectively. On one hand, recent studies show that more robust (adversarially trained) models are more generalizable. On the other hand, there is a lack of theoretical understanding of their fundamental connections. In this paper, we explore the relationship between regularization and domain transferability considering different factors such as norm regularization and data augmentations (DA). We propose a general theoretical framework proving that factors involving the model function class regularization are sufficient conditions for relative domain transferability. Our analysis implies that “robustness" is neither necessary nor sufficient for transferability; rather, regularization is a more fundamental perspective for understanding domain transferability. We then discuss popular DA protocols (including adversarial training) and show when they can be viewed as the function class regularization under certain conditions and therefore improve generalization. We conduct extensive experiments to verify our theoretical findings and show several counterexamples where robustness and generalization are negatively correlated on different datasets. 
    more » « less
  6. Recent work on 3D-aware image synthesis has achieved compelling results using advances in neural rendering. However, 3D-aware synthesis of face dynamics hasn't received much attention. Here, we study how to explicitly control generative model synthesis of face dynamics exhibiting non-rigid motion (e.g., facial expression change), while simultaneously ensuring 3D-awareness. For this we propose a Controllable Radiance Field (CoRF): 1) Motion control is achieved by embedding motion features within the layered latent motion space of a style-based generator; 2) To ensure consistency of background, motion features and subject-specific attributes such as lighting, texture, shapes, albedo, and identity, a face parsing net, a head regressor and an identity encoder are incorporated. On head image/video data we show that CoRFs are 3D-aware while enabling editing of identity, viewing directions, and motion. 
    more » « less