Visual odometry (VO) is a method used to estimate self-motion of a mobile robot using visual sensors. Unlike odometry based on integrating differential measurements that can accumulate errors, such as inertial sensors or wheel encoders, VO is not compromised by drift. However, image-based VO is computationally demanding, limiting its application in use cases with low-latency, low-memory and low-energy requirements. Neuromorphic hardware offers low-power solutions to many vision and artificial intelligence problems, but designing such solutions is complicated and often has to be assembled from scratch. Here we propose the use of vector symbolic architecture (VSA) as an abstraction layer to design algorithms compatible with neuromorphic hardware. Building from a VSA model for scene analysis, described in our companion paper, we present a modular neuromorphic algorithm that achieves state-of-the-art performance on two-dimensional VO tasks. Specifically, the proposed algorithm stores and updates a working memory of the presented visual environment. Based on this working memory, a resonator network estimates the changing location and orientation of the camera. We experimentally validate the neuromorphic VSA-based approach to VO with two benchmarks: one based on an event-camera dataset and the other in a dynamic scene with a robotic task.
more »
« less
Benchmarking Pedestrian Odometry: The Brown Pedestrian Odometry Dataset (BPOD)
This paper presents the Brown Pedestrian Odometry Dataset (BPOD) for benchmarking visual odometry algo- rithms on data from head-mounted sensors. This dataset was captured with stereo and RGB streams from RealSense cameras with rolling and global shutters in 12 diverse in- door and outdoor locations on Brown University’s cam- pus. Its associated ground-truth trajectories were gener- ated from third-person videos that documented the recorded pedestrians’ positions relative to stick-on markers placed along their paths. We evaluate the performance of canoni- cal approaches representative of direct, feature-based, and learning-based visual odometry methods on BPOD. Our finding is that current methods which are successful on other benchmarks fail on BPOD. The failure modes cor- respond in part to rapid pedestrian rotation, erratic body movements, etc. We hope this dataset will play a significant role in the identification of these failure modes and in the design, development, and evaluation of pedestrian odome- try algorithms.
more »
« less
- Award ID(s):
- 1910530
- NSF-PAR ID:
- 10387071
- Date Published:
- Journal Name:
- 3DV
- ISSN:
- 0219-6921
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IEEE (Ed.)This paper addresses the robustness problem of visual-inertial state estimation for underwater operations. Underwater robots operating in a challenging environment are required to know their pose at all times. All vision-based localization schemes are prone to failure due to poor visibility conditions, color loss, and lack of features. The proposed approach utilizes a model of the robot's kinematics together with proprioceptive sensors to maintain the pose estimate during visual-inertial odometry (VIO) failures. Furthermore, the trajectories from successful VIO and the ones from the model-driven odometry are integrated in a coherent set that maintains a consistent pose at all times. Health-monitoring tracks the VIO process ensuring timely switches between the two estimators. Finally, loop closure is implemented on the overall trajectory. The resulting framework is a robust estimator switching between model-based and visual-inertial odometry (SM/VIO). Experimental results from numerous deployments of the Aqua2 vehicle demonstrate the robustness of our approach over coral reefs and a shipwreck.more » « less
-
Unsupervised visual odometry as an active topic has attracted extensive attention, benefiting from its label-free practical value and robustness in real-world scenarios. However, the performance of camera pose estimation and tracking through deep neural network is still not as ideal as most other tasks, such as detection, segmentation and depth estimation, due to the lack of drift correction in the estimated trajectory and map optimization in the recovered 3D scenes. In this work, we introduce pose graph and bundle adjustment optimization to our network training process, which iteratively updates both the motion and depth estimations from the deep learning network, and enforces the refined outputs to further meet the unsupervised photometric and geometric constraints. The integration of pose graph and bundle adjustment is easy to implement and significantly enhances the training effectiveness. Experiments on KITTI dataset demonstrate that the introduced method achieves a significant improvement in motion estimation compared with other recent unsupervised monocular visual odometry algorithms.more » « less
-
Unsupervised visual odometry as an active topic has attracted extensive attention, benefiting from its label free practical value and robustness in real-world scenarios. However, the performance of camera pose estimation and tracking through deep neural network is still not as ideal as most other tasks, such as detection, segmentation and depth estimation, due to the lack of drift correction in the estimated trajectory and map optimization in the recovered 3D scenes. In this work, we introduce pose graph and bundle adjustment optimization to our network training process, which iteratively updates both the motion and depth estimations from the deep learning network, and enforces the refined outputs to further meet the unsupervised photometric and geometric constraints. The integration of pose graph and bundle adjustment is easy to implement and significantly enhances the training effectiveness. Experiments on KITTI dataset demonstrate that the introduced method achieves a significant improvement in motion estimation compared with other recent unsupervised monocular visual odometry algorithms.more » « less
-
null (Ed.)In this paper, we extend the recently developed continuous visual odometry framework for RGB-D cameras to an adaptive framework via online hyperparameter learning. We focus on the case of isotropic kernels with a scalar as the length-scale. In practice and as expected, the length-scale has remarkable impacts on the performance of the original framework. Previously it was handled using a fixed set of conditions within the solver to reduce the length-scale as the algorithm reaches a local minimum. We automate this process by a greedy gradient descent step at each iteration to find the next-best length-scale. Furthermore, to handle failure cases in the gradient descent step where the gradient is not wellbehaved, such as the absence of structure or texture in the scene, we use a search interval for the length-scale and guide it gradually toward the smaller values. This latter strategy reverts the adaptive framework to the original setup. The experimental evaluations using publicly available RGB-D benchmarks show the proposed adaptive continuous visual odometry outperforms the original framework and the current state-of-the-art. We also make the software for the developed algorithm publicly available.more » « less