Unsupervised visual odometry as an active topic has attracted extensive attention, benefiting from its label-free practical value and robustness in real-world scenarios. However, the performance of camera pose estimation and tracking through deep neural network is still not as ideal as most other tasks, such as detection, segmentation and depth estimation, due to the lack of drift correction in the estimated trajectory and map optimization in the recovered 3D scenes. In this work, we introduce pose graph and bundle adjustment optimization to our network training process, which iteratively updates both the motion and depth estimations from the deep learning network, and enforces the refined outputs to further meet the unsupervised photometric and geometric constraints. The integration of pose graph and bundle adjustment is easy to implement and significantly enhances the training effectiveness. Experiments on KITTI dataset demonstrate that the introduced method achieves a significant improvement in motion estimation compared with other recent unsupervised monocular visual odometry algorithms.
more »
« less
Deep Unsupervised Visual Odometry Via Bundle Adjusted Pose Graph Optimization
Unsupervised visual odometry as an active topic has attracted extensive attention, benefiting from its label free practical value and robustness in real-world scenarios. However, the performance of camera pose estimation and tracking through deep neural network is still not as ideal as most other tasks, such as detection, segmentation and depth estimation, due to the lack of drift correction in the estimated trajectory and map optimization in the recovered 3D scenes. In this work, we introduce pose graph and bundle adjustment optimization to our network training process, which iteratively updates both the motion and depth estimations from the deep learning network, and enforces the refined outputs to further meet the unsupervised photometric and geometric constraints. The integration of pose graph and bundle adjustment is easy to implement and significantly enhances the training effectiveness. Experiments on KITTI dataset demonstrate that the introduced method achieves a significant improvement in motion estimation compared with other recent unsupervised monocular visual odometry algorithms.
more »
« less
- PAR ID:
- 10426726
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation (ICRA)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Visual odometry (VO) and single image depth estimation are critical for robot vision, 3D reconstruction, and camera pose estimation that can be applied to autonomous driving, map building, augmented reality and many other applications. Various supervised learning models have been proposed to train the VO or single image depth estimation framework for each targeted scene to improve the performance recently. However, little effort has been made to learn these separate tasks together without requiring the collection of a significant number of labels. This paper proposes a novel unsupervised learning approach to simultaneously perceive VO and single image depth estimation. In our framework, either of these tasks can benefit from each other through simultaneously learning these two tasks. We correlate these two tasks by enforcing depth consistency between VO and single image depth estimation. Based on the single image depth estimation, we can resolve the most common and challenging scaling issue of monocular VO. Meanwhile, through training from a sequence of images, VO can enhance the single image depth estimation accuracy. The effectiveness of our proposed method is demonstrated through extensive experiments compared with current state-of-the-art methods on the benchmark datasets.more » « less
-
We propose XVO, a semi-supervised learning method for training generalized monocular Visual Odometry (VO) models with robust off-the-self operation across diverse datasets and settings. In contrast to standard monocular VO approaches which often study a known calibration within a single dataset, XVO efficiently learns to recover relative pose with real-world scale from visual scene semantics, i.e., without relying on any known camera parameters. We optimize the motion estimation model via self-training from large amounts of unconstrained and heterogeneous dash camera videos available on YouTube. Our key contribution is twofold. First, we empirically demonstrate the benefits of semi-supervised training for learning a general-purpose direct VO regression network. Second, we demonstrate multi-modal supervision, including segmentation, flow, depth, and audio auxiliary prediction tasks, to facilitate generalized representations for the VO task. Specifically, we find audio prediction task to significantly enhance the semi-supervised learning process while alleviating noisy pseudo-labels, particularly in highly dynamic and out-of-domain video data. Our proposed teacher network achieves state-of-the-art performance on the commonly used KITTI benchmark despite no multi-frame optimization or knowledge of camera parameters. Combined with the proposed semi-supervised step, XVO demonstrates off-the-shelf knowledge transfer across diverse conditions on KITTI, nuScenes, and Argoverse without fine-tuning.more » « less
-
Current deep neural network approaches for camera pose estimation rely on scene structure for 3D motion estimation, but this decreases the robustness and thereby makes cross-dataset generalization difficult. In contrast, classical approaches to structure from motion estimate 3D motion utilizing optical flow and then compute depth. Their accuracy, however, depends strongly on the quality of the optical flow. To avoid this issue, direct methods have been proposed, which separate 3D motion from depth estimation, but compute 3D motion using only image gradients in the form of normal flow. In this paper, we introduce a network NFlowNet, for normal flow estimation which is used to enforce robust and direct constraints. In particular, normal flow is used to estimate relative camera pose based on the cheirality (depth positivity) constraint. We achieve this by formulating the optimization problem as a differentiable cheirality layer, which allows for end-to-end learning of camera pose. We perform extensive qualitative and quantitative evaluation of the proposed DiffPoseNet’s sensitivity to noise and its generalization across datasets. We compare our approach to existing state-of-the-art methods on KITTI, TartanAir, and TUM-RGBD datasets.more » « less
-
Rolling shutter distortion is highly undesirable for photography and computer vision algorithms (e.g., visual SLAM) because pixels can be potentially captured at different times and poses. In this paper, we propose a deep neural network to predict depth and row-wise pose from a single image for rolling shutter correction. Our contribution in this work is to incorporate inertial measurement unit (IMU) data into the pose refinement process, which, compared to the state-of-the-art, greatly enhances the pose prediction. The improved accuracy and robustness make it possible for numerous vision algorithms to use imagery captured by rolling shutter cameras and produce highly accurate results. We also extend a dataset to have real rolling shutter images, IMU data, depth maps, camera poses, and corresponding global shutter images for rolling shutter correction training. We demonstrate the efficacy of the proposed method by evaluating the performance of Direct Sparse Odometry (DSO) algorithm on rolling shutter imagery corrected using the proposed approach. Results show marked improvements of the DSO algorithm over using uncorrected imagery, validating the proposed approach.more » « less