skip to main content


Title: A global open-source database of flood-protection levees on river deltas (openDELvE)
Abstract. Flood-protection levees have been built along rivers and coastlines globally. Current datasets, however, are generally confined to territorial boundaries (national datasets) and are not always easily accessible, posing limitations for hydrologic models and assessments of flood hazard. Here, we bridge this knowledge gap by collecting and standardizing global flood-protection levee data for river deltas into the open-source global river delta levee data environment, openDELvE. In openDELvE, we aggregate levee data from national databases, reports, maps, and satellite imagery. The database identifies the river delta land areas that the levees have been designed to protect. Where data are available, we record the extent and design specifications of the levees themselves (e.g., levee height, crest width, construction material) in a harmonized format. The 1657 polygons of openDELvE contain 19 248 km of levees and 44 733.505 km2 of leveed area. For the 153 deltas included in openDELvE, 17 % of the land area is confined by flood-protection levees. Around 26 % of delta population lives within the 17 % of delta area that is protected, making leveed areas densely populated. openDELvE data can help improve flood exposure assessments, many of which currently do not account for flood-protection levees. We find that current flood hazard assessments that do not include levees may exaggerate the delta flood exposure by 33 % on average, but up to 100 % for some deltas. The openDELvE is made public on an interactive platform (https://www.opendelve.eu/, 1 October 2022), which includes a community-driven revision tool to encourage inclusion of new levee data and continuous improvement and refinement of open-source levee data.  more » « less
Award ID(s):
1810855
NSF-PAR ID:
10387114
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Natural Hazards and Earth System Sciences
Volume:
22
Issue:
12
ISSN:
1684-9981
Page Range / eLocation ID:
4087 to 4101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inland levees can amplify flood risk in unprotected communities by altering floodwater levels away from their location. While these nonlocal effects of levees, which we term flood teleconnections, have been studied for specific river segments, their impact on flood risks along a river network remains underexplored. By combining data-driven, hydrodynamic, and economic models, we quantify the magnitude, spatial distribution, and economic damages associated with flood teleconnections for a large river network system with extensive levees. We find that due to levees, the 100-year flood inundation extent grows by 25% of the total levee-protected area regionally, and the flood inundation depth increases by up to 2 m at specific locations. Levees also increase the vulnerability of unprotected, marginalized communities to flooding. Our results demonstrate that flood teleconnections are spatially widespread, involve unaccounted costs, and can lead to flood inequities. These findings will be critical to climate adaptation efforts in flood-prone regions. 
    more » « less
  2. null (Ed.)
    Earthen levees protecting coastal regions can be exposed to compound flooding induced by multiple drivers such as coastal water level, river discharge, and precipitation. However, the majority of flood hazard analyses consider only one flood driver at a time. This study numerically investigates the performance of an earthen levee in Sherman Island, Sacramento, CA, under compound flooding induced by fluvial and pluvial flooding. A finite element model is built for fully coupled 3D stress-flow simulations of the levee. The finite element model is then used to simulate the hydro-mechanical response of the levee under different flood scenarios. Fluvial flood hydrographs for different scenarios are obtained using a bivariate extreme analysis of peak river discharge and peak ocean level while accounting for the significance of correlation between these two variables. Pluvial flooding is characterized using intensity-duration-frequency (IDF) curves of extreme precipitations for the study area. The fluvial and pluvial flood patterns for different recurrence intervals are used in the finite element model to simulate the hydro-mechanical response of the levee. Results show that considering compound flooding leads to 8.7% and 18.6% reduction in the factor of safety for 2 and 50-year recurrence intervals, respectively. 
    more » « less
  3. Abstract

    River deltas will likely experience significant land loss because of relative sea‐level rise (RSLR), but predictions have not been tested against observations. Here, we use global data of RSLR and river sediment supply to build a model of delta response to RSLR for 6,402 deltas, representing 86% of global delta land. We validate this model against delta land area change observations from 1985–2015, and project future land area change for IPCC RSLR scenarios. For 2100, we find widely ranging delta scenarios, from +94 ± 125 (2 s.d.) km2yr−1for representative concentration pathway (RCP) 2.6 to −1,026 ± 281 km2yr−1for RCP8.5. River dams, subsidence, and sea‐level rise have had a comparable influence on reduced delta growth over the past decades, but if we follow RCP8.5 to 2100, more than 85% of delta land loss will be caused by climate‐change driven sea‐level rise, resulting in a loss of ∼5% of global delta land.

     
    more » « less
  4. Abstract

    We present a latent characteristic in socio-spatial networks, hazard-exposure heterophily, to capture the extent to which populations with dissimilar hazard exposure could assist each other through social ties. Heterophily is the tendency of unlike individuals to form social ties. Conversely, populations in hazard-prone spatial areas with significant hazard-exposure similarity, homophily, would lack sufficient resourcefulness to aid each other to lessen the impact of hazards. In the context of the Houston metropolitan area, we use Meta’s Social Connectedness data to construct a socio-spatial network in juxtaposition with flood exposure data from National Flood Hazard Layer to analyze flood hazard exposure of spatial areas. The results reveal the extent and spatial variation of hazard-exposure heterophily in the study area. Notably, the results show that lower-income areas have lower hazard-exposure heterophily possibly caused by income segregation and the tendency of affordable housing development to be located in flood zones. Less resourceful social ties in hazard-prone areas due to their high-hazard-exposure homophily may inhibit low-income areas from better coping with hazard impacts and could contribute to their slower recovery. Overall, the results underscore the significance of characterizing hazard-exposure heterophily in socio-spatial networks to reveal community vulnerability and resilience to hazards.

     
    more » « less
  5. García-Ayllón Veintimilla, Salvador (Ed.)
    Historical information about floods is not commonly used in the US to inform land use planning decisions. Rather, the current approach to managing floods is based on static maps derived from computer simulations of the area inundated by floods of specified return intervals. These maps provide some information about flood hazard, but they do not reflect the underlying processes involved in creating a flood disaster, which typically include increased exposure due to building on flood-prone land, nor do they account for the greater hazard resulting from wildfire. We developed and applied an approach to analyze how exposure has evolved in flood hazard zones in Montecito, California, an area devastated by post-fire debris flows in January 2018. By combining historical flood records of the past 200 years, human development records of the past 100 years, and geomorphological understanding of debris flow generation processes, this approach allows us to look at risk as a dynamic process influenced by physical and human factors, instead of a static map. Results show that floods after fires, in particular debris flows and debris laden floods, are very common in Montecito (15 events in the last 200 years), and that despite policies discouraging developments in hazard areas, developments in hazard zones have increased substantially since Montecito joined the National Flood Insurance Program in 1979.We also highlight the limitation of using conventional Flood Insurance Rate Maps (FIRMs) to manage land use in alluvial fan areas such as Montecito. The knowledge produced in this project can help Montecito residents better understand how they came to be vulnerable to floods and identify action they are taking now that might increase or reduce their vulnerability to the next big flood. This science-history-centric approach to understand hazard and exposure evolution using geographic information systems (GIS) and historical records, is generalizable to other communities seeking to better understand the nature of the hazard they are exposed to and some of the root causes of their vulnerabilities, in other words, both the natural and social processes producing disasters. 
    more » « less