- Award ID(s):
- 1810855
- Publication Date:
- NSF-PAR ID:
- 10387114
- Journal Name:
- Natural Hazards and Earth System Sciences
- Volume:
- 22
- Issue:
- 12
- Page Range or eLocation-ID:
- 4087 to 4101
- ISSN:
- 1684-9981
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us tomore »
-
Earthen levees protecting coastal regions can be exposed to compound flooding induced by multiple drivers such as coastal water level, river discharge, and precipitation. However, the majority of flood hazard analyses consider only one flood driver at a time. This study numerically investigates the performance of an earthen levee in Sherman Island, Sacramento, CA, under compound flooding induced by fluvial and pluvial flooding. A finite element model is built for fully coupled 3D stress-flow simulations of the levee. The finite element model is then used to simulate the hydro-mechanical response of the levee under different flood scenarios. Fluvial flood hydrographs for different scenarios are obtained using a bivariate extreme analysis of peak river discharge and peak ocean level while accounting for the significance of correlation between these two variables. Pluvial flooding is characterized using intensity-duration-frequency (IDF) curves of extreme precipitations for the study area. The fluvial and pluvial flood patterns for different recurrence intervals are used in the finite element model to simulate the hydro-mechanical response of the levee. Results show that considering compound flooding leads to 8.7% and 18.6% reduction in the factor of safety for 2 and 50-year recurrence intervals, respectively.
-
Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers areexpected to increase in response to warming and associated permafrost thaw.However, the lack of appropriate land cover datasets for scalingfield-measured methane emissions to circumpolar scales has contributed to alarge uncertainty for our understanding of present-day and future methaneemissions. Here we present the Boreal–Arctic Wetland and Lake Dataset(BAWLD), a land cover dataset based on an expert assessment, extrapolatedusing random forest modelling from available spatial datasets of climate,topography, soils, permafrost conditions, vegetation, wetlands, and surfacewater extents and dynamics. In BAWLD, we estimate the fractional coverage offive wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes(17 % of the global land surface). Land cover classes were defined usingcriteria that ensured distinct methane emissions among classes, as indicatedby a co-developed comprehensive dataset of methane flux observations. InBAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain)with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetlandclasses, covering ∼ 28 % each of the total wetland area,while the highest-methane-emitting marsh and tundra wetland classes occupied5 % and 12 %, respectively. Lakes, defined to include all lentic open-waterecosystems regardless of size, covered 1.4 × 106 km2(6 % of domain).more »
-
Future sea-level rise poses an existential threat for many river deltas, yet quantifying the effect of sea-level changes on these coastal landforms remains a challenge. Sea-level changes have been slow compared to other coastal processes during the instrumental record, such that our knowledge comes primarily from models, experiments, and the geologic record. Here we review the current state of science on river delta response to sea-level change, including models and observations from the Holocene until 2300 CE. We report on improvements in the detection and modeling of past and future regional sea-level change, including a better understanding of the underlying processes and sources of uncertainty. We also see significant improvements in morphodynamic delta models. Still, substantial uncertainties remain, notably on present and future subsidence rates in and near deltas. Observations of delta submergence and land loss due to modern sea-level rise also remain elusive, posing major challenges to model validation. ▪ There are large differences in the initiation time and subsequent delta progradation during the Holocene, likely from different sea-level and sediment supply histories. ▪ Modern deltas are larger and will face faster sea-level rise than during their Holocene growth, making them susceptible to forced transgression. ▪ Regional sea-level projectionsmore »
-
River deltas are dynamic systems whose channels can widen, narrow, migrate, avulse, and bifurcate to form new channel networks through time. With hundreds of millions of people living on these globally ubiquitous systems, it is critically important to understand and predict how delta channel networks will evolve over time. Although much work has been done to understand drivers of channel migration on the individual channel scale, a global-scale analysis of the current state of delta morphological change has not been attempted. In this study, we present a methodology for the automatic extraction of channel migration vectors from remotely sensed imagery by combining deep learning and principles from particle image velocimetry (PIV). This methodology is implemented on 48 river delta systems to create a global dataset of decadal-scale delta channel migration. By comparing delta channel migration distributions with a variety of known external forcings, we find that global patterns of channel migration can largely be reconciled with the level of fluvial forcing acting on the delta, sediment flux magnitude, and frequency of flood events. An understanding of modern rates and patterns of channel migration in river deltas is critical for successfully predicting future changes to delta systems and for informing decisionmore »